5ちゃんねる ★スマホ版★ ■掲示板に戻る■ 全部 1- 最新50  

■ このスレッドは過去ログ倉庫に格納されています

数学の質問スレ【大学受験版】part30

1 :大学への名無しさん:04/04/29 13:12 ID:IEdtZ6pS
1000超えてたから新しくたてました。

2 :○○社:04/04/29 13:13 ID:fkYeUqPw
げと

3 :大学への名無しさん:04/04/29 13:15 ID:jWvmGUj2
すいません、次スレがまだ立ってないことに気付かないで埋めちゃいました(汗

4 :大学への名無しさん:04/04/29 13:25 ID:iA+hRGnO
質問なんですが、【新課程】青チャートp28重要例題15(2)
(a+b+c)二乗+(b+c-a)二乗+(c+a-b)二乗+(a+b-c)二乗
の工夫した計算の仕方を教えて下さい。
チャートの解答だけじゃわかりません。
中2でもわかるように詳しく教えて下さい。

5 :○○社:04/04/29 13:29 ID:fkYeUqPw
最初の二つは
b+c=A あとの二つは b-c=B っておいたら楽だよ。

6 :○○社:04/04/29 13:32 ID:fkYeUqPw
(a+A)^2(a-A)^2(a-B)^2(a+B)^2
={(a+A)(a-A)}^2{(a-B)(a+B)}^2
=(a^2-A^2)^2(a^2-B^2)^2

7 :大学への名無しさん:04/04/29 13:33 ID:nbiapniE
>>5-6
中二じゃわからないと思われ

8 :○○社:04/04/29 13:39 ID:fkYeUqPw
あ、+だった…(鬱氏

9 :○○社:04/04/29 13:45 ID:fkYeUqPw
俺ならこざかしい事せずに
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca
使うんだけどな。

10 :大学への名無しさん:04/04/29 13:48 ID:nbiapniE
>>9
はげどー

この程度なら力技で解いてもスピードは変わらない
頭使う前に手を動かすべし

11 :大学への名無しさん:04/04/29 13:49 ID:7DzXM2pl
s=a+b+c


=s^2+(s-2a)^2+(s-2b)^2+(s-2c)^2
=4s^2-4(a+b+c)s+4(a^2+b^2+c^2)
=4s^2-4s^2+4(a^2+b^2+c^2)
=4(a^2+b^2+c^2)

12 :○○社:04/04/29 13:57 ID:fkYeUqPw
>>11
すげぇ。
こんなん思いつかん。対称性性崩さずにですな。

13 :大学への名無しさん:04/04/29 13:59 ID:8LNZ5JF8
y=2/(1-x^2)の増減表を書く問題なのですが、y'=4x/(1-x^2)^2よりyはx=±1
で定義されないので、x<-1のときy'<0,-1<x<0のときy'<0,x=0のときy'=0,
0<x<1のときy'>0,1<xのときy'>0に応じてyの増減を書けばよいのですが、
解答ではx<-1のときと、1<xのときyの↓、↑と一緒に0が、丁度∞を矢印に合わ
せて書くのと同じように書かれていました。この0が何を示しているのか
分かりません。最初は0に収束するということを示しているのかと思ったけど、
収束するわけありませんし・・・。

14 :大学への名無しさん:04/04/29 17:13 ID:Fvta1NOZ
ていうか、テンプレくらい貼れと。
まぁ建てちゃったならいいけど。単発質問増えるぞ。

15 :天麩羅:04/04/29 17:43 ID:aEBSqrK7
数学の問題に関する質問をどうぞ。参考書・勉強の仕方等は各専用スレで。

質問をする際の注意
・その問題をどこまで解いたのか、どの部分が分からないのか、具体的に書く。
・必要と思われる場合は、自分がどこまで履修済みか書く。(例:1A2Bまで)
・数式を書くときは、極力誤解のない書き方をする。
 例えば、1/2aより、(1/2)a あるいは 1/(2a) のように書いた方が分かりやすい。

数学記号の書き方
http://members.at.infoseek.co.jp/mathmathmath/
図・グラフ掲示板
http://www6.tok2.com/home2/wi2003/cgi-bin/bbs3/bbsnote.cgi

過去スレ
part29 http://school2.2ch.net/test/read.cgi/kouri/1078963285/

それ以前は>>2

16 :過去ログ:04/04/29 17:45 ID:aEBSqrK7
過去ログ
Part1 http://school.2ch.net/kouri/kako/1016/10160/1016008085.html
Part2 http://school.2ch.net/kouri/kako/1020/10200/1020087580.html
Part3 http://school.2ch.net/kouri/kako/1025/10257/1025785783.html
Part4 http://school.2ch.net/kouri/kako/1029/10298/1029866597.html
Part5 http://school.2ch.net/kouri/kako/1032/10320/1032026826.html
Part6 http://school.2ch.net/kouri/kako/1033/10334/1033469482.html
Part7 http://school.2ch.net/kouri/kako/1036/10367/1036785888.html
Part8 http://school2.2ch.net/test/read.cgi/kouri/1040034565/l50
Part9 http://school2.2ch.net/test/read.cgi/kouri/1042765761/l50
Part10 http://school2.2ch.net/test/read.cgi/kouri/1044101232/l50
part11 http://school2.2ch.net/test/read.cgi/kouri/1044828874/l50
part12 http://school2.2ch.net/test/read.cgi/kouri/1045895181/l50
part13 http://school2.2ch.net/test/read.cgi/kouri/1047118250/l50
part14 http://school2.2ch.net/test/read.cgi/kouri/1049381621/l50
part15 http://school2.2ch.net/test/read.cgi/kouri/1052403965/l50
part16 http://school2.2ch.net/test/read.cgi/kouri/1054193413/l50
part17 http://school2.2ch.net/test/read.cgi/kouri/1056518836/l50
part18 http://school2.2ch.net/test/read.cgi/kouri/1058461770/l50
part19 http://school2.2ch.net/test/read.cgi/kouri/1060183061/l50
part20 http://school2.2ch.net/test/read.cgi/kouri/1061665677/l50
Part21 http://school2.2ch.net/test/read.cgi/kouri/1063269681/l50
Part22 http://school2.2ch.net/test/read.cgi/kouri/1065931301/l50
part23 http://school2.2ch.net/test/read.cgi/kouri/1067761519/l50
part24 http://school2.2ch.net/test/read.cgi/kouri/1069023159/l50
part25 http://school2.2ch.net/test/read.cgi/kouri/1071117417/l50
part26 http://school2.2ch.net/test/read.cgi/kouri/1073739135/l50
part27 http://school2.2ch.net/test/read.cgi/kouri/1075254162/l50
part28 http://school2.2ch.net/test/read.cgi/kouri/1076522562/l50

17 :大学への名無しさん:04/04/29 17:49 ID:aEBSqrK7
>>13
よくわからんが、x→±∞ならy→0だが

18 :大学への名無しさん:04/04/29 21:16 ID:Yb8cWKMs
>>17
なるほど。確かにその通りです。解答の増減表が起点がはっきりしない書き方
だったのでなんか勘違いしてました。

19 :大学への名無しさん:04/04/29 23:14 ID:jU/1B9SD
質問です。 マジバカな質問してると思いますが、、「整数問題」って何でしょう?
因数分解とか恒等式、方程式等を駆使して解く問題??
 教科書的な分野分けで言えば「数と式」にあたるところと考えて宜しいでしょうか?

20 :大学への名無しさん:04/04/29 23:32 ID:Yb8cWKMs
>>19
そうだよ。そういえば整数問題って誰かがある程度パターン化してるって言ってた
けど、どういうパターンがあるんだっけ?
方程式に変形して解く
不等式で解の範囲を絞り込む
偶奇で場合分け
倍数表示で解く
他に思いつくのあったらきぼんぬ。

21 :大学への名無しさん:04/04/30 00:55 ID:OQfQzS58
素数=1×素数とか?

前スレより持ってきました。答えはひとつだそうですが
どうやって答えをひとつに絞れば良いんでしょうか?
教えて下さい。

数列{x(n)}がx(1)=3,x(n+1)={4x(n)-2}/{x(n)+1}で定義されている。
x(n)の一般項を求めよ。(広島県立大:誘導省略)

特性方程式 y(n)=x(n)+αとおく。
x(n)=y(n)−αを与式に代入してこれを解く。
即ち、
α={4α-2}/{α+1}
(α−2)(α−1)=0
α=1,2
これは、α+1≠0を満たす。




x(n)={6・3^(n-1)-2^n}/{2・3^(n-1)-2^(n-1)}
または
x(n)={4・3^(n-1)-2^(n-1)}/{2・3^(n-1)-2^(n-1)}

一応このように自力で解答を出したのですが
αの値が2つあるので、答えが2つ出る物なんでしょうか??


22 :大学への名無しさん:04/04/30 01:09 ID:BG6MpMAj
>>21
途中を略してあるからよくわからないけど、
両方ともx(1)=3になってるか?

23 :○○社:04/04/30 01:58 ID:4CWSZf1R
分数漸化式を誘導無しで出題するとは、
広島県立はどうなってるんだろ。

24 :大学への名無しさん:04/04/30 02:08 ID:eqZv02oc
>>21
> 数列{x(n)}がx(1)=3,x(n+1)={4x(n)-2}/{x(n)+1}で定義されている。
> x(n)の一般項を求めよ。(広島県立大:誘導省略)
:
> x(n)={6・3^(n-1)-2^n}/{2・3^(n-1)-2^(n-1)}

これ、約分したらx(n)=2だよ。

25 :大学への名無しさん:04/04/30 02:47 ID:29hXbIG/
>>23
先祖がえり

26 :○○社:04/04/30 02:48 ID:4CWSZf1R
>>25
スマン、意味が分からん。

27 :大学への名無しさん:04/04/30 02:49 ID:29hXbIG/
>>26
ああ、大昔の入試にはノーヒントで出てたのです。
で、広島県立は突如として大昔の大学の意識に
なってしまったのではないかと。

28 :○○社:04/04/30 02:51 ID:4CWSZf1R
>>27
そういう意味ね、了解。
今の受験生は漸化式の解き方の知識が少ないらしいね。

29 :大学への名無しさん:04/04/30 02:51 ID:OQfQzS58
>>23
いえ、本当は誘導あるんです。
広島県立がこんなにムズイはずありませんw
誘導に沿うと、あっさり解答できるんですが……
一般化したくてこっちで省略しました。
分数漸化式は誘導なしでは出題されないものなのですか?

>>24
なるほど。約分すると変だから×と答えればOKですか?
答えだと、確かにそれは不適のようです。
誘導の段階で落とされるようですが、理由がよく分からなかったもので。
結局αの値を両方代入してみて最後まで計算してから
不適切な物を省く方法しかないのでしょうか?

30 :○○社:04/04/30 02:53 ID:4CWSZf1R
>>29
大体出題されないものです。
三項間漸化式や混合(?)漸化式、対数漸化式も普通は誘導がついてる。

31 :大学への名無しさん:04/04/30 02:59 ID:29hXbIG/
>>28
そうみたいね。なんでかな。予備校でも参考書でも
相変わらず扱ってるのに。
n+1項目がn項目の一次式分の一次式
って格好なら一回やったら、今度はノーヒントでも
できるようになってやろうって思いやすいと思うんだけど。

32 :大学への名無しさん:04/04/30 03:01 ID:VFAivk2q
>>29
普通に解いたら正解の方しか出てこない

33 :○○社:04/04/30 03:01 ID:4CWSZf1R
文科省の指導要領外だからじゃね?>誘導つき

34 :大学への名無しさん:04/04/30 03:21 ID:+b8y94rs
細野にあった包絡線のことだけど
何であれで求められるの?

35 :○○社:04/04/30 03:22 ID:4CWSZf1R
シラネ

36 :大学への名無しさん:04/04/30 04:10 ID:OQfQzS58
>>32
どうやって解くのか教えてください。

37 :大学への名無しさん:04/04/30 04:18 ID:EFq8ULEL
x(n+1)=(4x(n)-2)/(x(n)+1)

[x(n+1), 1] // [[4, -2], [1, 1]][x(n), 1]
と考えれば、2次正方行列[[4, -2], [1, 1]]のn乗を
求める問題に帰着される

38 :大学への名無しさん:04/04/30 04:49 ID:rGVdtEVb
>>36
特性方程式(漸化式のx_(n+1)とx_nをαに置き換えたもの)を解く
異なる2解α、βのときは y_n=(x_n-α)/(x_n-β)とおいてy_nの漸化式をつくる
重解αのときは y_n=1/(x_n-α)とおいて同上

39 :大学への名無しさん:04/04/30 10:30 ID:JOszcXca
>>21
>>29
この場合は>>21で省略された途中式こそが最も重要なこと。
そこでおかしなことをしているから、おかしな結果が出ただけのことでしょう。
そもそもy(n)の置き方からして怪しげですからね。

>>24
本当に約分したらx(n)=2になります?

40 :大学への名無しさん:04/04/30 16:21 ID:z58M6fCB
数Vの微分でグラフ書くことで質問なんだけど
たとえば
y=2sinx-cos2xだったらy'=0はx=π/2  3π/2  7π/6  11π/6で
増減表をかくとこの数値の間が+とか-とか書くときって全部計算してるの?
第二次導関数とかで凹凸調べるのとかも全部計算してるの?

41 :○○社:04/04/30 17:40 ID:xYUsVbqs
y'=2cosx+2sin2x=2cosx(1+sinx) になるけど、別に適当な値を代入して
正負を決めるとこなんてないぞ。正負はcosxにのみ依存するじゃん?

42 :大学への名無しさん:04/04/30 17:44 ID:z58M6fCB
そういうのを見つけるのはどうやるのでしょう?
今まで適当に代入してたんでおしえてください

43 :○○社:04/04/30 17:48 ID:xYUsVbqs

式を見てわからない?
1+sinx≧0 (∵-1≦sinx≦1)
つまり1+sinxは0以上なんだから、正負に関係ないって感じしない?

44 :大学への名無しさん:04/04/30 17:50 ID:z58M6fCB
わかりました。そういうのを見つけるのは慣れしかないのですか?


45 :○○社:04/04/30 17:53 ID:xYUsVbqs
慣れっつーか、式を積の形(つまり因数分解)したら(大抵の問題は
出来るようになってる)わかるよ。

46 :○○社:04/04/30 17:56 ID:xYUsVbqs
一回立ち止まって式の意味を考えるのも必要だと思うよ。

47 :大学への名無しさん:04/04/30 17:58 ID:z58M6fCB
これからその方法を意識してやってみます。ありがとうございました。

48 :大学への名無しさん:04/04/30 18:26 ID:DZgPoI96
,

49 :大学への名無しさん:04/04/30 18:27 ID:DZgPoI96
>>40
ただ、極値見れば増減はわかると思う。
ある極値があって、その次の極値があったとすると、
その極値の大きさ見ればグラフが下がっているか上がっているかわかるべ

50 :大学への名無しさん:04/04/30 20:22 ID:iNDR9qYU
三角関数の問題なのですが、
cos^2(π/4+θ)+cos^2(π/4-θ)
の値が求められません。
多分このスレ始まって以来のもっとも簡単な問題
だと思うのですが・・。どうか教えていただけませんでしょうか?
すみません。

51 :大学への名無しさん:04/04/30 20:47 ID:IC9bKCbV
加法定理を使ってから2乗を展開

52 :大学への名無しさん:04/04/30 20:59 ID:DZgPoI96
>>50
質問する前に教科書読もうな。

53 :大学への名無しさん:04/04/30 21:10 ID:i+SB/EnC
もちろん51の方法でいいが、
半角の公式で2乗を無くしてから加法定理で展開
という方法もある。

54 :大学への名無しさん:04/04/30 21:13 ID:DWLZsxk+
>>38
ありがとうございます。
次からその方法でやってみようと思います。

>>39
怪しげですか……。どうやって置いていいか分からなかったので
結構適当に置いてました。省略された部分はα=1のときと
α=2のときをそれぞれ計算しただけなのですが、まぁ置き方がダメということで。


55 :高1:04/04/30 21:18 ID:uOEIMw3P
f(x)=−x^2+2Ax+1  (1≦x≦2) この2次関数の最大を求めよ
頂点X座標にも変数A、y座標もAの式なのにグラフが横にしか移動しないのは
なぜですか?
(1≦x≦2)はx軸Aの範囲?
低レベルの質問ですがよろしく

56 :○○社:04/04/30 21:20 ID:xYUsVbqs
縦にも動きますよ。

57 :大学への名無しさん:04/04/30 21:23 ID:cszlWlFe
>>55
>(1≦x≦2)はx軸Aの範囲?

質問の意味がわからん

58 :高1:04/04/30 21:24 ID:uOEIMw3P
最大 最小を見つけるときに、縦方向の動きが重要でないのはなぜですか?
レスお願いします

59 :大学への名無しさん:04/04/30 21:36 ID:cszlWlFe
>>58
重要なのはAの範囲(値)だと思われ。
例えば
-A(軸)≦1(xの取り得る最小の値)
ならxがいくつのときf(x)は最大値をとるかわかるか?

それがわからないなら文字のついてない2次関数から勉強しろ

60 :大学への名無しさん:04/04/30 21:57 ID:FHU6PDqh
>>40
x=7π/6  11π/6のときy'=0となる?今、ざっと計算したんだけどならないん
じゃない?y=2sinx-cos2x y'=2cosx+2sin2x=2cosx(1+sinx)

61 :大学への名無しさん:04/04/30 23:30 ID:JOszcXca
>>54
だからさあ。省略せずにその計算過程を書けってば。
その『ただ計算しただけ』の過程に『単純な計算ミス』が潜んでるだけの話ですよ。


62 :大学への名無しさん:04/05/01 00:37 ID:z3NHC6Ap
f"(α)>0だったら極小値か傾き減少だよね。
たのむ

63 :大学への名無しさん:04/05/01 00:42 ID:z3NHC6Ap
y=2sinx-cos2x

y’=2cosx+2sin2x=2cosx+4sinxcosx=2cosx(1+2sinx)
でy'=0

cosx=0 sinx=-1/2でいいんじゃない 

64 :大学への名無しさん:04/05/01 00:44 ID:L/IB9f24
対数関数の極限を求めるとき、よく、

lim (1+1/x)^x = e
x→∞

lim(1+x)^1/x = e
x→0

limlog(1+x)/x = 1
x→0
のようになるのですが、2つめから3つめにするとき、両辺の対数をとって、
loglim1+x/x = 1
x→0
となると思うのですがなぜ直でlimの中をlog化できるのでしょうか?


65 :○○社 ◆rRQ3gXBJ5o :04/05/01 00:48 ID:j1cYDhLc
あっと、俺は重大なミスを犯してたということか…鬱氏

66 :大学への名無しさん:04/05/01 02:52 ID:7OWAmp9l
>>64
logの連続性を使ってます

67 :大学への名無しさん:04/05/01 02:59 ID:eQc9oZyx
>>63
スマソ。41のタイプミスか計算ミスのy'をそのまま使ってたので間違ってた。

68 :大学への名無しさん:04/05/01 03:04 ID:eQc9oZyx
>>65
ドンマイ

69 :大学への名無しさん:04/05/01 03:13 ID:eQc9oZyx
>>64
logそのものは「操作」を意味しているのであって例えばy=logxにおいて、
xの値に対応するyの値はただ1つ決まる。xの値が変化(x→0など)
することによって変化するのは(1+x)^1/xのみであるから、それはlogによって
ただ1つに決定づけられる。うまく説明できない。数列の極限でも似たような
のがあったから教科書を参照してくれ。

70 :64:04/05/01 04:04 ID:7OWAmp9l
logは連続関数である lim_[y→a]log(y)=log(a)
今の問題で y=(1+x)^(1/x)と考えてみれば
x→0 のとき y→e
これらを組み合わせて
lim_[x→0]log(1+x)/x=log(e)=1

71 :大学への名無しさん:04/05/01 04:05 ID:7OWAmp9l

名前欄
64×
66○

72 :大学への名無しさん:04/05/01 05:32 ID:mF/50hwY
x^2+16/x の最小値を求めよ。

73 :大学への名無しさん:04/05/01 06:57 ID:gx3W4lJJ
微分汁

74 :大学への名無しさん:04/05/01 09:06 ID:7D6V9wT/
>>72
lim_[x→-0](x^2+16/x)=-∞ ? (ry 

75 :大学への名無しさん:04/05/01 09:29 ID:7D6V9wT/
>>50 へのレスがみるに耐えないので・・・
cos^2(π/4+θ)+cos^2(π/4-θ)=cos^2(π/4+θ)+cos^2{π/2-(π/4+θ)}=cos^2(π/4+θ)+sin^2(π/4+θ)=1 
オ・ワ・リ (ry

76 :大学への名無しさん:04/05/01 09:39 ID:k3OfAyAb
>>72
x>0 が抜けてるかな
x^2+16/x=x^2+8/x + 8/x として相加相乗使えば早い

77 :大学への名無しさん:04/05/01 18:29 ID:L/IB9f24
>>66
thx

78 :大学への名無しさん:04/05/01 21:35 ID:pQ/JlBSX
>>70
分かり易いね。

79 :大学への名無しさん:04/05/01 21:50 ID:3XcQ1AWD
>>66
lim(1+x)^1/x = e
x→0

limlog(1+x)/x = 1
x→0

この過程で、両辺をlog化したのなら
limlog(1+x)^1/x=lim1/xlog(1+x) = 1
x→0
になるのではないでしょうか?




80 :大学への名無しさん:04/05/02 07:24 ID:uSY9Nv6j
>>79
君自身が式を正確に書いてないのではないか?
例えば
lim(1+x)^1/x = e 
x→0

lim(1+x)^(1/x) = e
x→0
あるいは
lim[x→0](1+x)^(1/x) = e
と書くべきだな
つまり
limlog(1+x)/x = 1
x→0

lim[x→0]{log(1+x)}/x = 1
とすべきだな
何かを伝えたいなら共有するルールに則って表現してくれ

81 :大学への名無しさん:04/05/02 16:37 ID:hWpwdWJ3
あほな質問かもしれないけど
A/B=C ∴B=A/C
これって途中の式変形って、
A/B-C=0
A-BC/B=0
A-BC=0
BC=A
B=A/C
っていうことですか?

82 :大学への名無しさん:04/05/02 17:36 ID:kxIxjyMJ
>>81 マジできいてるのか?
A/B=C の両辺に B をかけて A=BC
左右を入れ替えて BC=A
両辺 C(C≠0)で割って、B=A/C

83 :大学への名無しさん:04/05/02 18:22 ID:w3psCdso
>>80
lim[x→0]{log(1+x)}/x = 1
その通りです。64のをそのままコピペしたので。スマソ。

84 :大学への名無しさん:04/05/02 19:34 ID:hWpwdWJ3
>>82
サンキュー。
マジできいてました。


85 :大学への名無しさん:04/05/02 19:42 ID:x0LqAo5T
xの方程式 √(x-a)=x の実数解を求めよ。(aは実数)

これって両辺二乗して解の公式でいいの?なんか裏がある?

86 :大学への名無しさん:04/05/02 19:56 ID:mWP4AVy1
2条したときにx>0っておく。

87 :大学への名無しさん:04/05/02 20:03 ID:x0LqAo5T
そっか、ルートは正だからx>0になるね。
つまり解の公式で出てくる「±」の解のうち「+」を採用すると。
86さん、ありがとです。

88 :大学への名無しさん:04/05/02 20:03 ID:mWP4AVy1
一般項が以下の数列の極限って問題なんだけど
1+4+7+.......+(3n-2)/n^2

これって分母と分子をΣで和を計算してlim[n→∞]でいいんお?
無限級数とこんがらがってしまう。

89 :大学への名無しさん:04/05/02 20:12 ID:x0LqAo5T
>>88
0じゃない?
lim[n→∞](3n-2)/n^2=lim[n→∞](3/n)-2/n^2=0-0=0

90 :大学への名無しさん:04/05/02 20:14 ID:+9YIWYl9
>>88
{1+4+7+.......+(3n-2)}/n^2 だろ? 正確に書けよ!

>これって分母と分子をΣで和を計算して・・・

これは例えば
1/2+2/3=(1+2)/(2+3)=3/5 ってことか? (ry


91 :88:04/05/02 20:19 ID:mWP4AVy1
Σ[k=1](3k-2)とΣ[k=1]k^2を計算して

lim[n→∞]{9n-3}/2n^2+3n+1を計算は違うんですか?

92 :大学への名無しさん:04/05/02 20:39 ID:+9YIWYl9
一般項が
a_n={1+4+7+.......+(3n-2)}/n^2
なんだろ?
だったら分母の和って何だよ?
それに
>・・狽ナ和を計算
って、「煤vは「和(級数)」の略記号だろ?
狽ェ和の計算をするわけじゃないよ。
まず基本事項の確認すべきだな。
勘違いも甚だしいし、式表現すらマトモに出来ていない。

a_n={n(3n-1)/2}/n^2=(3-1/n)/2 → 3/2 (n→∞)

93 :大学への名無しさん:04/05/02 21:15 ID:luQsV0uP
>>85 aの値によって場合わけするとよさげ。

√(x-a)=x ⇔「x^2-x+a=0 かつ x≧0 かつ x≧a」・・・★
よって,f(x)=x^2-x+a とし,xに関する2次方程式 f(x)=0 の判別式をDとおく.

[1] a>0 のとき
★ ⇔「f(x)=0 かつ x≧a」となる.ここでさらに,Dの値によって場合わけする.

(1) D>0,すなわち,0<a<1/4 のとき
f(x)=0 の相異なる2実数解をα,β(α<β)とおく.xy平面上において,下に凸な放物線 y=f(x) は
x軸と異なる2つの共有点 (α,0),(β,0) を持ち,その軸は x=1/2(>a) である.
また,f(a)=a^2>0 であるから,a<α<1/2<β.よって,この場合,★ ⇔ x=α,β ⇔ x={1±√(1-4a)}/2.

(2) D=0,すなわち,a=1/4 のとき
★ ⇔「x=1/2 かつ x≧1/4」⇔ x=1/2.

(3) D<0,すなわち,1/4<a のとき
★を満たす実数は存在しない.

[2] a=0 のとき
★ ⇔「x(x-1)=0 かつ x≧0」⇔ x=0,1.

[3] a<0 のとき
★ ⇔「f(x)=0 かつ x≧0」
また,D>0,f(a)=a^2>0,f(0)=a<0 であるから,a<α<0<1/2<β.したがって,★ ⇔ x=β ⇔ x={1+√(1-4a)}/2.

以上より,
a<0 のとき,x={1+√(1-4a)}/2.
0≦a<1/4 のとき,x={1±√(1-4a)}/2.
a=1/4 のとき,x=1/2.
1/4<a のとき,実数解は存在しない.
・・・答

94 :85:04/05/02 21:29 ID:x0LqAo5T
>>93
すごい!それが完璧な解答だね。ありがとうございます。

95 :大学への名無しさん:04/05/02 21:48 ID:+9YIWYl9
>>85 ヴィジュアル的別解 (ry
xの方程式 √(x-a)=x の実数解は、
放物線 y^2=x-a のx軸より上の部分Cと直線L:y=x の交点のx座標である。
グラフを描くことにより次のようになる。
まず、CとLは a=1/4 のとき点(1/2,1/2)で接する。
aの値によりグラフCの頂点の位置が変化することを考慮して
@) 1/4<a のとき、交点は持たない。つまり、与方程式は実数解を持たない。
A) a=1/4 のとき、点(1/2,1/2)で接する。つまり、与方程式は重解 x=1/2 を持つ。
B) 0≦a<1/4 のとき、異なる2点({1±√(1-4a)}/2,{1±√(1-4a)}/2) (複号同順)で交わる。
 つまり、与方程式は異なる2実数解 x={1±√(1-4a)}/2 を持つ。
C) a<0 のとき、ただの1点({1+√(1-4a)}/2,{1+√(1-4a)}/2)で交わる。
 つまり、与方程式はただ1つの実数解 x={1+√(1-4a)}/2 を持つ。

96 :大学への名無しさん:04/05/02 22:07 ID:29AXKYsJ
【新課程】青チャート【基本例題38・39】
各(1)〜(4)
基本例題37
(2)
の問題でなんで絶対値の場わい分けの仕方がわかりません。
この問題に限らず。わかりません。
特に基本例題の37
P、Qを定数とするXの不等式PX≦X+Qで
場合わけは、P>1の時 P<1の時 P=1・Q≧0の時 P=1 Q<0の時
とあるのに、P>1 Q≧0の時 P<1 Q≧0などは考えなくてもいいのですか? 
                

97 :大学への名無しさん:04/05/02 22:11 ID:YrJqXKzf
>>96
-2x≧-4
x≦2

2x≧-4
x≧-2
はわかってるのか?場合分けする必要があるかどうかもう一度考えてみれ

98 :大学への名無しさん:04/05/02 23:01 ID:qtfzvndJ
赤2白4枚の6枚の円盤を平面上の半径1の円周C上に円盤の中心が等間隔に並ぶようにおく。
円盤の半径はすべて1/2より小さく、赤い円盤が隣合う確率は2/5である。
@赤い円盤の中心がCの直径の両端となる確率は?
A2枚の赤い円盤の中心間の距離の期待値は?

この二つの問いが分かんないので、どうか教えてほしいです。

99 :大学への名無しさん:04/05/02 23:12 ID:YrJqXKzf
>>98
答えも載せてくれるとマジで助かるんだけど。

1は3/10?めっちゃ自信ないわ

100 :大学への名無しさん:04/05/02 23:13 ID:zwxXjRPw
>>98
赤い円盤をひとつ固定して考えると良いよ。たぶん

101 :大学への名無しさん:04/05/02 23:20 ID:YrJqXKzf
>>100
で答えはいくつになった?ドキドキ

102 :98:04/05/03 01:01 ID:1lipOwsf
えーと答えは
@1/5 A(4+2√3)/5   です。


103 :大学への名無しさん:04/05/03 01:16 ID:tf4cD/1x
>>98
1
形が以下の3パターンあるのはわかるか?(図でかけば一目瞭然なんだが…)
A 赤同士が隣り合う場合
B 赤と赤の間に白1個の場合
C 赤と赤の間に白2個の場合(求めたい確率)

Aの場合の確率が2/5だよね。とゆーことはB+Cの確率は1-2/5=3/5となる。
んでもって、BとCの確率の比は2:1(>>100の言うよーに赤1個を固定してみるとわかるかも)
∴求める確率は3/5*1/3=1/5

2
A 中心間の距離1 確率2/5 →1*2/5=2/5
B 中心間の距離√3 確率2/5 →√3*2/5=2√3/5
C 中心間の距離2 確率1/5 →2*1/5=2/5
∴期待値は2/5+2√3/5+2/=(4+2√3)/5

わかりづらいかもしれんな。とにかく図書いてみるべし

104 :大学への名無しさん:04/05/03 01:52 ID:orRZnUNY
初歩的な質問ですが第2次導関数f''(x)は、関数f(x)が存在しても必ず存在する
ものではありませんよね?例えばf(x)=|x|の場合などはx=0で微分できませんが、
xの範囲で場合分けをした場合第2次導関数は考えられませんかね?x=0を含む十分
小さい区間が考えられないのでダメですか?第2次導関数が存在しない場合とは
どんな場合か教えてください。

105 :大学への名無しさん:04/05/03 02:03 ID:orRZnUNY
>>104
すいません。自分で書いてるうちに納得しますた。区間で考えるんですね。

106 :大学への名無しさん:04/05/03 10:29 ID:QNCBzDa9
瞬間部分積分法、?関数など高校範囲外のこと教えてください。

107 :大学への名無しさん:04/05/03 10:30 ID:c2ksPUQl
>>106
板違い

108 :大学への名無しさん:04/05/03 11:02 ID:3PtbyFH7
あれって瞬間でも何でもないんだけどな

109 :大学への名無しさん:04/05/03 11:12 ID:YsY1ZEN/
>>104
そもそも第1次導関数を考えるべきじゃないか、という気がするんだが。なぜ
いきなり第2次まで飛ぶんだ?

110 :大学への名無しさん:04/05/03 11:34 ID:YEU/vW6/
代ゼミのセンター模試より。。
簡単な問題で申し訳ないですが教えてください。

f(x)=x^2-(2a+2)x+2a^2-a+3 頂点 (a+1,a^2-3a-4)
のグラフについてx≧0の範囲でf(x)>0となるようなaの範囲を答えよ。

で解を見ると、
a+1<0つまりa<-1のとき、
f(0)=2^2-a-3>0つまりa<-1,3/2<a
a<-1とあわせてa<-1・・・@

a+1≧0のとき(省略)a<-1,4<a
a≧1とあわせて4<a

@・Aよりa<-1,4<a とありました。
この時Aは分かるんですが、@が意味不明です。
x≧0の時点でa+1<0なんてありえないと思うんですが・・
ここの部分は何を表してるんでしょうか

111 :大学への名無しさん:04/05/03 11:35 ID:YEU/vW6/
すいません

a+1≧0のとき(省略)a<-1,4<a
a≧1とあわせて4<a・・・A
です。Aが抜けていました

112 :98:04/05/03 13:15 ID:ds0NKynP
>103
@はめっちゃ分かったんですけど、Aの中心間の距離が1、√3、2になるとこがよく分からないです。。

113 :大学への名無しさん:04/05/03 13:55 ID:OcQYFFgj
>>112
実際に図を考えてみると分かりやすいが、それぞれの円盤の中心は等間隔に並んでるんだから、
半径1の円に内接する正六角形を考えてるのと同じ。

114 :大学への名無しさん:04/05/03 13:57 ID:c2ksPUQl
>>112
6個を円周上に均等に並べるんだから。360/6=60°

Aの場合は正三角形になるよね。だから全ての辺の長さは1

Bの場合は2辺(半径)が1でその挟む角(中心角が)120°の三角形になる。
あとは余弦定理を使うべし

Cの場合は中心間の距離=直径になるから2

こんどはどーだ?図を頑張って書いてみてくれ。

115 :大学への名無しさん:04/05/03 14:02 ID:c2ksPUQl
>>110
>x≧0の時点でa+1<0なんてありえないと思うんですが・・

なぜ?軸がx≧0にあるとはどこにも書かれてないよね。

何を表しているかって言うと
軸が負の場合はx=0でf(x)は正の値をとってなきゃだめだぞと。
そんな話だわ

実はオレもその問題(世ゼミ)解いたんだ。
確率は3分で解き終わった。簡単すぎだよね。

116 :大学への名無しさん:04/05/03 14:05 ID:OcQYFFgj
>>110
aはxに関係ない定数だからありえないことは無いよ。
y=f(x)のグラフについてグラフを書くと軸はx=a+1になるでしょ。
グラフを書いて考えたときに、グラフの軸がy軸よりも左側にあれば
あとはf(0)>0を確認するだけで良いんだよ。

つまりグラフの形はどうなろうとx≧0の範囲だけを考えれば良いってこと。

117 :110:04/05/03 14:20 ID:YEU/vW6/
>>115-116
なるほど。
a+1をx座標と勘違いしていました。
ありがとうございます。

とそれは分かったんですが、
f(0)>0というのを調べるのはなぜでしょうか?


118 :大学への名無しさん:04/05/03 14:24 ID:c2ksPUQl
>>117
f(x)のx^2の係数が正なんだからグラフは下に凸になるでしょ。
ちゅーことは

軸が負の場合

x≧0の範囲でf(x)はx=0の時に最小値をとるんじゃけん。
となるとx≧0の範囲でf(x)>0を示したかったら最小値>0が言えればいいわな。

119 :110:04/05/03 14:46 ID:YEU/vW6/
>>118
なるほど!ばっちり分かりました。
皆さんありがとう御座いました。

120 :大学への名無しさん:04/05/03 18:17 ID:02cArxgO
質問させていただきます。
記号が良くわからないので 問題と回答をupしました。

問題→ http://web2ch.s31.xrea.com:8080/?plugin=attach&pcmd=open&file=Scan10002.JPG&refer=Uploader
回答→http://web2ch.s31.xrea.com:8080/?plugin=attach&pcmd=open&file=Scan10001.JPG&refer=Uploader

わからない箇所は 問題40のupした解答に出ている『?』のところの n+1 がなぜなるのかを教えていただきたいです。
後は 問題41の解答に出ている『?』のところの a/4 になった理由です。

DQNな質問かもしれませんが、どうかよろしくお願いします。

121 :大学への名無しさん:04/05/03 18:46 ID:c2ksPUQl
>>120
3*3^n=3^(n+1)となるのはわかるのか?

aを求めてそれを1の式に代入してbを求めただけだぞ

122 :大学への名無しさん:04/05/03 18:55 ID:5vUfRlM8
問題40
@よりb = 3a + (-2)^n
これにa = {3^n - (-2)^n}/5を代入
b=3{3^n - (-2)^n} / 5 + (-2)^n
={3*3^n - 3*(-2)^n + 5*(-2)^n}/5
={3*3^n - (-2)*(-2)^n}/5
={3^(n+1) - (-2)^(n+1)}/5

問題41
P(x)を8x^3 - 1で割った余りは4x^2 - 2x + 1で割り切れるからk(4x^2 - 2x + 1)とおける。
そもそも最初にP(x)を8x^3 - 1で割った余りをax^2 + bx + cとおいたはず。
この2つは当然等しいから4k=a、k=(a/4)。


123 :大学への名無しさん:04/05/03 19:01 ID:5vUfRlM8
>>120
http://members.at.infoseek.co.jp/mathmathmath/
を参考に。

次スレ>>1リンクよろしく。

124 :大学への名無しさん:04/05/03 20:32 ID:UX9v0SF3
和と積の公式って分かりやすい覚え方ないですか?

125 :大学への名無しさん:04/05/03 21:14 ID:LzK9NMXb
三角函数の 和→積,積→和 の公式を

丸暗記しているヤシは三流
テストのときその場で加法定理から出してるヤシは二流

126 :大学への名無しさん:04/05/03 21:40 ID:A17y/mbg
>>125
テストのときその場で加法定理から出してるヤシは二流

>>じゃあどうすればいいんですか?漏れは加法定理から導いてるんだけど。

127 :大学への名無しさん:04/05/03 21:45 ID:OcQYFFgj
カンニングするヤシは一流

128 :124:04/05/03 22:05 ID:UX9v0SF3
結局、丸暗記と作るのどっちがいいですか?

129 :大学への名無しさん:04/05/03 22:22 ID:ixnBxCgo
>>128
だいたい暗記。
大体の形を覚えておいて、0°、30°、60°、90°などを代入して正しいことを確認。
間違ってたら、仕方ないので作る。

130 :大学への名無しさん:04/05/03 23:14 ID:YbIB3KRM
>>126
>>125はコピペだよ

131 :大学への名無しさん:04/05/04 03:04 ID:HQcQLWtE
逆関数の微分なのですが、

正接の逆関数をtan-1xと書く。f(x)=6tan-1xのとき、f`(1)を求めよ。

という問題で、解答に
y=6tan-1xとおくと、
y/6=tan-1x  @

x=tan(y/6)  A

このときy/6でなく、yならわかるのですが、y/6でも成り立つ理由がわからない。



132 :大学への名無しさん:04/05/04 03:11 ID:nK2dzJX+
>>131
わからん文章だな。
>このときy/6でなく、yならわかるのですが、y/6でも成り立つ理由がわからない。
ってのは
y/6=tan-1x  ならば  x=tan y
になるならはなしは分かるが
y/6=tan-1x  ならば  x=tan(y/6)
になるとはどうしても思えない
ってことか?

133 :Q#:04/05/04 10:18 ID:d3dDLHdb
(問題)
m,nは1≦n<mを満たす整数である.
甲君と乙君がジャンケンを2m回する.但し引き分けは回数に含めない.
k回目のジャンケンの後で,それまで甲君の勝数から乙君の勝数を引いた値を
s(k)とする。s(2m)=2nであったとき,
s(1)>0,s(2)>0,…,s(2m−1)>0
となっている確率をm,nで表せ.

(疑問点)
縦(m−n)横(m+n)の格子を作り,甲が勝つと横,乙が勝つと縦に動くものとして
所謂,最短経路問題に帰着させようと思いました。
そしてスタート地点とゴール地点を結んだ対角線を越えない場合が
s(1)>0,s(2)>0,…,s(2m−1)>0 にあたるとまでは考えついたのですが
対角線と格子の途中の中途半端な所の扱いがわかりません。
どなたかご教授お願します。



134 :131:04/05/04 11:51 ID:HQcQLWtE
>>132
教科書の定義に従えば、@においてy=の形にしなければひっくりかえすことはできないのではないか・・と。

135 :大学への名無しさん:04/05/04 12:25 ID:laPrNZVK
>>134
教科書の定義を曲解してるね

136 :大学への名無しさん:04/05/04 13:13 ID:q7MCDKqY
90°-θの三角比が
 tan(90°-θ)=1/tan
になるのはなぜ?


137 : :04/05/04 13:34 ID:SY0ANgG0
∫[x,a](x-t)f'(t)dtを微分せよ.

お願いします。

138 :大学への名無しさん:04/05/04 14:11 ID:ACV/xEyE
>>133
本当にその方法で求められるか?

k 回目までの勝負で甲が勝った回数を a[k] と置くと
乙が勝った回数は k-a[k] 回。よって s[k]=2*a[k]-k.
条件 s[2m]=2n は a[2m]=m+n と表せる。
ところで 1<=n<m だから 1<=a[2m]-m<m つまり m+1<=a[2m]<2m …(P)

m=2 の場合を考える。
このとき条件 (P) は 3<=a[4]<4 となるから a[4]=3.(よって n=1 )
よって4回の勝負のうち甲が勝つ回数は3回である。
また s[k]>0 であるためには、乙が勝って良いのは
3回目と4回目だと直ちにわかる。

この m=2 の場合を>>133の格子点の考えでやろうとすると
xy平面上において、原点、(3,0),(3,1),(0,1) の4点からなる長方形を用意して
原点と (3,1) を結ぶ対角線を超えないような運動になるわけだけど
それだと乙が4回目に勝つ場合しか数えてないことになる。

と、こうなると思うのだが。

139 :大学への名無しさん:04/05/04 14:35 ID:fQnJIeeJ
>>137
自信はないけど・・・
F(x)=∫[x,a](x-t)f'(t)dtとする。
F(x)=x∫[x,a]f'(t)dt-∫[x,a]tf'(t)dt

d{x∫[x,a]f'(t)dt}/dx
=∫[x,a]f'(t)dt+xf(x)
=f(x)-f(a)+xf(x)

d{∫[x,a]tf'(t)dt}}/dx
=xf'(x)

ゆえに
F'(x)=(x+1)f(x)-xf'(x)-f(a)

140 :大学への名無しさん:04/05/04 14:42 ID:fQnJIeeJ
>>136
tanx = sinx/cosx
sin(90°-θ)= cosθ (※)
cos(90°-θ)= sinθ (※)
ゆえに
tan(90°-θ)= sin(90°-θ)/cos(90°-θ)= cosθ/sinθ = 1/tanθ

(※)直角三角形の直角でない角の一方をθとすれば他方は 90°-θ。あとは、sinとcosの定義より。

141 :大学への名無しさん:04/05/04 15:29 ID:isFbXRH1
>>134
全然そんなことはないが、どうしてもそうしたかったら
y/6=tan-1xを
y=6*tan-1xとでも同値変形してから
yとxを入れ替えればどうですか?

142 :大学への名無しさん:04/05/04 15:58 ID:xz/2gcuu
トランプから13枚のカードを配るとき、その中に4枚のハートが選ばれる確立はいくらか

ってのは13C4(1/4)^4(3/4)^9でいいんでしょうか?
何か題意を変えてるような違和感があるのですが

143 :大学への名無しさん:04/05/04 17:14 ID:HV3Y/4g+
>>142の式は"反復試行"の式だろ?
この式で求めたら、
1回カードを引いて戻してもう1回カードを引いて戻して…を13回繰り返したとき、
4回ハートが出る確率が計算できる。

でも題意から言うとカードを引いても戻さないよね?
だから素直にC[13,4]C[39,9]/C[52,13]でいいのでは?

144 :慢性の何か ◆MANSEEEyhA :04/05/04 18:21 ID:5HphAZpN
>>142
{(4!・48・47・46・・・・39)/(52・51・・・・・39)}÷13!じゃ駄目なのかえ。
確率はよくわからん・・・

145 :大学への名無しさん:04/05/04 18:24 ID:MW7bobPW
>>142
最低限問題は正確に写そう

146 :大学への名無しさん:04/05/04 18:57 ID:88QuwlPi
>>141
ありがとうございます

147 :大学への名無しさん:04/05/04 19:59 ID:B56t8ETU
∫|sinx+cosx/3|dx の計算で絶対値の中身0はどうもとめるんですか。   
 

148 :大学への名無しさん:04/05/04 20:22 ID:FmpUAAts
因数分解の質問です。

(b+c)a^2+{(b+c)^2+bc}a+bc(b+c)
=(a+b+c){(b+c)a+bc}

どうしてこうなるか分かりません。
お願いします。

149 :大学への名無しさん:04/05/04 20:23 ID:MW7bobPW
>>148
まずは1つの文字について整理してみれ

150 :大学への名無しさん:04/05/04 20:27 ID:FmpUAAts
>>149
aについて整理したんです。
どのように因数分解したら答えに辿り着くかが分かりません・・・・

151 :大学への名無しさん:04/05/04 20:28 ID:MW7bobPW
>>150
ああゴメン寝てた。そこまではできてるやんか
あとはたすきがけってやつですよ。

152 :大学への名無しさん:04/05/04 20:31 ID:fQnJIeeJ
>>148
たすきがけ。
(b+c)   bc − bc 
   ×
 1   (b+c) − (b+c)^2

153 :大学への名無しさん:04/05/04 20:31 ID:FmpUAAts
>>151
たすきがけですかー。
数字のたすきがけは分かるんですけど、文字のたすきがけになったとたん分からなくなるんですよ・・・

154 :大学への名無しさん:04/05/04 20:36 ID:s2zpMoex
>>147
ふつうそこはtanα=1/3となるαをおいたりして分ける。
αは求めない。

155 :大学への名無しさん:04/05/04 20:38 ID:FmpUAAts
>>151-152
解決しました。
どうもありがとうございました。


156 :大学への名無しさん:04/05/04 21:13 ID:k6FUe5oD
旧課程を勉強してる者なんですが、2次試験での影響はほとんど無いと見ていいですか?

157 :大学への名無しさん:04/05/04 21:13 ID:MW7bobPW
>>156
意味不明

158 :大学への名無しさん:04/05/04 21:17 ID:6cN09n8c
曲線の漸近線について質問ですが、x軸に垂直でない漸近線について
x→+∞,-∞のとき|f(x)-(ax+b)|→0のどれかが成り立つと直線y=ax+bはy=f(x)
の漸近線であり、このとき{f(x)/x}→a, {f(x)-ax}→bとしてa,bが定まると
いうのですが、a,bの値がどうしてこうした方法で求まるのですか?感覚的にはな
んとなく分かるのですが・・・。

159 :156:04/05/04 21:50 ID:k6FUe5oD
すいません質問がアホでした。

恥ずかしい・・・・。無視して下さい。



160 :大学への名無しさん:04/05/04 22:44 ID:X97afivL
質問です。よろしくお願いします

ニューアクションβp45 問題

aは6−2√2を超えない最大の整数とし、b=6−2√2−aとする。
この時、aの値を求めよ。(以下略)


この時整数を求める方法、n≪x<n+1をやろうとして、

1<√2<2
としてから
2<6−2√2<4、としたのですが、解答では

1<√2<1.5
としてから
3<6−2√2<4、で整数部分aは3になっていました。

√が2倍などされていたら、nやn+1は2倍して整数になるよう求めないといけないのでしょうか?

どうかよろしくお願いします。

161 :大学への名無しさん:04/05/04 23:07 ID:5+xhZffK
2と4の間、だと整数部分確定しないからまずいよね。
俺なら、2√2=√8に直してから2<√8<3でいきます。

162 :大学への名無しさん:04/05/04 23:10 ID:l3ygNkZK
>>160
当然。というかその考え方は面倒だから俺はこう考えるけど。
√4=2 < 2√2=8 < √9=3より
6-3=3 < 6-2√2 <6-2=4

163 :大学への名無しさん:04/05/04 23:12 ID:X97afivL
>>161
ありがとうございます!
解決しました。

なるほど。こう考えたら間違うのも当然だったか。


164 :大学への名無しさん:04/05/04 23:14 ID:X97afivL
>>162
あ、レスが遅れました。テンクスです。

165 :大学への名無しさん:04/05/04 23:34 ID:X97afivL
あ、あと一つまた厨な質問になりますがお願いします。

5/2<√7<3、の整数部分を求めるときは、
整数を求めるから5/2の整数部分の2をaとするという認識でいいんでしょうか?

特に間違えたわけでもないんですが、気になっていたので。
できればよろしくお願いします。

166 :大学への名無しさん:04/05/04 23:38 ID:5+xhZffK
>>165
いい

167 :大学への名無しさん:04/05/04 23:42 ID:X97afivL
>>166
ありがとうございます。
何度もすみません

168 :131:04/05/05 00:51 ID:G+WRVywe
>>141
そうすると
x=6*tany
となって、別の等号になってしまうのだが。


169 :大学への名無しさん:04/05/05 02:35 ID:MGBCF5O2
極限についてですが、lim[x→∞]{x+√(x^2-1)}=lim[x→∞]{1/(x-√(x^2-1))}=0
であるとき、lim[x→∞]{(x+√(x^2-1))/x}=0となるのでしょうか?それとも、
変形してlim[x→∞]{(x+√(x^2-1))/x}=lim[x→∞]{1+√(1-1/x^2)}=2とする
のが正しいでしょうか?自分は後者だと思うのです。なぜなら前者は分子は収束する
けど、分母が収束しないため成り立たないと思うからです。


170 :○○社 ◆rRQ3gXBJ5o :04/05/05 02:37 ID:GRjpuKTk
lim[x→∞]{(x+√(x^2-1))/x}=lim[x→∞]{1+√(1-1/x^2)}=2


ぷくす

171 :大学への名無しさん:04/05/05 02:43 ID:jfsBT8/6
>>168
素直に{arctan(x)}'=1/(1+x^2)使えばいいと思うのですが

>>169
(x+√(x^2+1))/xの所はなにしてるの?

172 :大学への名無しさん:04/05/05 02:53 ID:crxzWw9Z
>>168
>教科書の定義に従えば、@においてy=の形にしなければひっくりかえすことはできないのではないか・・と。
@の前にy=6arctan(x)の形にしているじゃんw
@自体が逆関数を求める計算の一部だyo!
@からy=・・・の形にしたら元の式に戻ってしまう罠


173 :大学への名無しさん:04/05/05 03:00 ID:hoqYuH6S
おまいらこの問題解ける?
このスレのみんなに解いてほしい。漏れはマジわからん。
おまいらの脳みそ貸してくれ。マジレスきぼん。

「xyz空間においてxy平面上に円盤Aがありxz平面上に円盤Bがあって以下の2条件を満たしているものとする
〈a〉ABは原点からの距離が1以下の領域に含まれる
〈b〉ABは1点pのみを共有しpはそれぞれの円周上にある
このような円盤AとBの半径の和の最大値を求めよ。
(ただし円盤とは円の内部と円周をあわせたものを意味する)

よろしくm(__)m

174 :○○社 ◆rRQ3gXBJ5o :04/05/05 03:06 ID:GRjpuKTk
>>169
>lim[x→∞]{(x+√(x^2-1))/x}=lim[x→∞]{1+√(1-1/x^2)}


この変形間違ってない?

lim[x→∞]{(x+√(x^2-1))/x}=lim[x→∞]{x+√(1-1/x^2)}=∞
っしょ?

175 :大学への名無しさん:04/05/05 03:09 ID:5i/Nh0hx
『x,yがx^2+y^2=5を満たしながら変化するとき、
2x+yの最大値最小値を求めよ』

という問題で2x+y=kと置いて連立して解いて
k=5,-5を得ます。このとき旧白チャ演習23の解答では
存在確認のため(x,y)を求めて確認してるんですが、
このプロセスは必要ですか?
kについては必要条件で押してる部分が無いので
要らないと思うのですが。

176 :大学への名無しさん:04/05/05 03:09 ID:sWi164mZ
>>173
http://hiw.keinet.ne.jp/nyushi/honshi/99/answer.cgi/t1/math-b?page=5

177 :○○社 ◆rRQ3gXBJ5o :04/05/05 03:09 ID:GRjpuKTk
あ、勘違いっす。
スルーしてくらはい

178 :大学への名無しさん:04/05/05 03:09 ID:jfsBT8/6
とりあえず頭の中で考えただけだけど3/2じゃないの?

179 :大学への名無しさん:04/05/05 03:12 ID:sWi164mZ
>>175
あったほうがベター。
xとyが虚数解、の可能性を排除するため。

180 :大学への名無しさん:04/05/05 03:18 ID:sWi164mZ
>>172
arctanっていう関数があるわけですよ。ええ。
たとえば、その関数に「1」っていう数字を放り込んだら
「π/4」っていう角度がかえってくるわけですよね。
一般化すると、
X=tan(Y) ⇔Y=arctan(X)
なわけです。
この式でX=x,Y=y/6にあたる、と考えたらどうでしょう。

181 :大学への名無しさん:04/05/05 03:30 ID:v8Xjw86g
>>168
またわからん質問だな
「別の等号」ってどういう意味さ?

182 :大学への名無しさん:04/05/05 03:31 ID:+beiwPZk
>>174
いや間違ってないっす。lim[x→∞]{(x+√(x^2-1))/x}で{x+√(x^2-1)}をxで
割ってるんです。()が小さいため分かりにくかったらスマソ。


183 :○○社:04/05/05 03:32 ID:GRjpuKTk
>>182
177おながいします。
スンマソ

184 :158:04/05/05 03:35 ID:2YfpMG1F
数学板で解決したのでスルーしてください。スマソ。

185 :175:04/05/05 03:37 ID:5i/Nh0hx
>>179
そうですか
2乗の条件式だから虚数解も出ちゃうんですね・・・
ありがとうございます

186 :大学への名無しさん:04/05/05 03:42 ID:tm95Z8G7
新課程の数列って、旧数Aの数列の内容に何か加わったりするの?

187 :大学への名無しさん:04/05/05 04:02 ID:UJPI5hho
>>169
そもそも1行目がおかしい

lim[x→∞]{x+√(x^2-1)}=lim[x→∞]{1/(x-√(x^2-1))}=0
なんだこりゃ

188 :大学への名無しさん:04/05/05 04:33 ID:OoXS1ov0
a=1+2+4+8+16+32+…
2a= 2+4+8+16+32+…
下の式から上の式を引いたら
a=-1
???

189 :大学への名無しさん:04/05/05 04:57 ID:VhuGJgUH
再来年受験なんですが、センター過去問を研究するのは意味ありますか?

190 :大学への名無しさん:04/05/05 05:01 ID:6VGCt97v
  指揮下にある哲学板幣関係者駐屯地における記録班により
実施された予備的作戦に関してのコード31190987より幣作戦司令部
第五管区(第二中央支局)コード31190345への報告
 与えられた支指示に従って、コード31190987(以下乙)は、哲学板域
における所在コードGDHIU-678993K(以下@)における自分の支配下の
駐屯地において起こった事柄に関する次の報告書を、第五管区(第二
中央支局)コード31190345(以下丙)にお送りする名誉をもつのであります。
 @が電駐守備隊、駐屯地並びに関連施設に対する作戦機関の最初の
実験地に選ばれたことについて上層部より知らせれるや否や、小生は
この作戦を成功させるべくあらゆる便宜を提供する態勢をととのえ、
無線コードによってコード31190367(以下准将)に予備的作戦に先立って
@においてはいかなる処置をとるべきでありますかと質問いたしました。
それに対して准将は、自分は自分自身で哲学板域に移って準備と実験の
経過を監督することになるであろうから、準備は一切無用である旨告げ
たのであります。
この途中経過と決定事項、〇六九号は部隊内では公示されないし、通知書、
あるいは通達の形式による連絡もしないことにします。管理局の仕官、
あるいは准将は自分の部隊の電駐並びに下仕官に無線コードで内容を
知らせ、同時に、施設について疑惑の影を感じさせたり悪意のある風評を
招く恐れがあるので、この件については秘密を厳守するよう通告願います。

主計監査局副長代理

コード31190987 署名

承認且つ配布を命じる

2004年5月5日、某所


191 :190:04/05/05 05:03 ID:6VGCt97v
暗号読解、誰かできるやついる?

192 :大学への名無しさん:04/05/05 05:06 ID:GRjpuKTk
よし漏れが挑戦しよう!

193 :大学への名無しさん:04/05/05 05:09 ID:GRjpuKTk
どれとけばいいの?

194 :大学への名無しさん:04/05/05 05:10 ID:6VGCt97v
数・字!

195 :大学への名無しさん:04/05/05 05:11 ID:GRjpuKTk
コード31190367とか?

196 :大学への名無しさん:04/05/05 05:12 ID:6VGCt97v
うん

197 :大学への名無しさん:04/05/05 05:13 ID:GRjpuKTk
どこのスレにあったやつ?

198 :大学への名無しさん:04/05/05 05:13 ID:6VGCt97v
哲板

僕哲板の住人だもの

199 :大学への名無しさん:04/05/05 05:16 ID:GRjpuKTk
出来ればスレのアドレスきぼんぬ

200 :大学への名無しさん:04/05/05 05:19 ID:6VGCt97v
哲学板・ローカルルール審議中

http://academy2.2ch.net/philo/#10

201 :大学への名無しさん:04/05/05 05:23 ID:GRjpuKTk
これは文字置き換えとかそういうのじゃないし、
肝心の文も読めるから別に解読の必要がない、と言うか、無理。
使われてる数字は伝えたい相手のコードだろうから、
はっきり言って、解読する必要もないかと。

202 :大学への名無しさん:04/05/05 05:25 ID:6VGCt97v
そうでつか・・僕文系なので・・

今哲板は大分裂の危機にありまして・・

どうもありがとうでつ。

203 :大学への名無しさん:04/05/05 05:28 ID:GRjpuKTk
分裂なんてしないよ、多分。
別に哲学板は人が多いわけでもなく、仲悪いって理由だけなら
2ちゃん運営側も分裂は認めないと思ふ。
分裂→新しい板をつくる
って意味ね。

204 :Aquirax:04/05/05 05:47 ID:zZgCrCvg
哲学なんてつまらないですよ(笑)

205 :大学への名無しさん:04/05/05 13:03 ID:G+WRVywe
>>180
arctanのarcってどういうことなの?
6みたいな係数arctanにつけてひっくり返してはだめなのか?



206 :169:04/05/05 13:45 ID:492caAc8
>>187
確かに1行目おかしいっすね。x→-∞の間違いです。これじゃあわけわからんな。
スルーして下さい。

207 :大学への名無しさん:04/05/05 13:57 ID:X0IZK8Hy
>>205
arc は「円弧」の意。
弧度法で表された角度 x (rad) に対してその正接を y とすると、yはxの関数であり
y = tan x
と表されるが、-π/2<x<π/2 においてはその逆関数 tan^(-1) が存在し
y = tan x  ⇔  x = tan^(-1) y
である。ここで、x = tan^(-1) y は弧度(rad)、つまり、半径 1 の円弧の長さを表しているので、
x は正接の値が y であるような半径 1 の円弧(arc)の長さである意味から
x = tan^(-1) y = arctan y
と表すのです。



208 :大学への名無しさん:04/05/05 14:19 ID:8B+qEVgJ
少し亀だけど>>175
x=√5*cosθ, y=√5*sinθとおいたら(θは任意の実数)
2x+y=√5*sinθ+2√5*cosθ
=5sin(θ+α) (αはcosα=√5/5,sinα=2√5/5を満たす)
となって、最大値5, 最小値-5がかなり楽に求めれる。


209 :大学への名無しさん:04/05/05 15:06 ID:XsvXuCBF
質問なのですが、三次関数の対称性(変曲点に関して対称である、等)
って記述式の入試で使っても良いのでしょうか?
細野の参考書にのみ載っていた(証明なしで)ので使えるのか心配です。
また、これって証明出来るんでしょうか?

210 :あぽ[40.0] ◆yIJZGN69Cg :04/05/05 15:42 ID:Ept3e1O1
>>209
文系で、証明無しに使うと減点される場合もあるんじゃないかな(´д`;?
証明は変曲点を原点に持ってくるように平行移動すると、その3次関数が奇関数になるはず。


211 :大学への名無しさん:04/05/05 17:00 ID:cYRmmHgM
>>175
十分性を示していなければならないので必要です。
因みに、コーシー・シュワルツの不等式により
(x^2+y^2)(2^2+1^2)≧(2x+y)^2 ⇔ 5(x^2+y^2)≧(2x+y)^2
x^2+y^2=5 であるから 5^2≧(2x+y)^2 等号成立は x/2=y/1
従って、MAX(2x+y)=5 ((x,y)=(2,1)のとき)、min(2x+y)=-5 ((x,y)=(-2,-1)のとき)


212 :175:04/05/05 22:06 ID:+Z7GA/E5
>>208
>>211
すごーい感激のレスが・゚・(つД`)・゚・  
ありがとうございます!!

213 :大学への名無しさん:04/05/05 22:15 ID:+p/76kxs
質問です。高一です。
相反方程式で、どういったときにx+1/x=tとおいて解くのか、
または因数定理を使って解くのか、教えて下さい。
例えば、2x^4+x^3-6x^2+x+2の方程式を解こうとすると因数定理使うんですが
x^4+8x^3+17x^2+8x+1これだと因数定理では解けません。
x+1/x=tを使う時と因数定理を使う時の区別がわかりません。
ショボイ質問かもしれないですが、よろしくお願いします。

214 :医2年:04/05/05 22:16 ID:dn6oKQA1
>>213
 ??
 「相反」の意味分かってる・・・?
 2x^4+x^3-6x^2+x+2  ってそうはんじゃないよ?

215 :大学への名無しさん:04/05/05 22:21 ID:dn6oKQA1
名前欄けすの忘れとった。

 x^4+8x^3+17x^2+8x+1
 は、「x^4」の部分の係数(すなわち1)と、「定数項」の部分の係数(すなわち1)が一致してて
 「x^3」の部分の係数(すなわち8)と、「x」の部分の係数(すなわち8)が一致してる。

 つまりそうはんほーてーしきってのは
 ○x^4+△x^3+□x^2+△x+○  の形を言って、この形ならx+1/x=tと置くことでラッキーなことに
 偶然、うまく解ける   ってもんだよ。

 一般的な4次方程式の上手な解き方ってのは勉強しないんだけど、偶然解ける「形」ってのがあるわけね。
(1)x=1など、適当な値を代入すれば0になる(解の見当がつく)場合→因数定理
(2)そうはんほうていしき

216 :214かつ215:04/05/05 22:22 ID:dn6oKQA1
 も1つ忘れとった。
(3)ふく2じしき
 (x^2+x+1)^2+5(x^2+x+1)+4  みたいな奴ね。

217 :大学への名無しさん:04/05/05 22:35 ID:+p/76kxs
意味わかってなかったです。すいません・・・
今ちゃんと理解しました。
4次式解き方まで教えてくださってありがとうございました。

218 :大学への名無しさん:04/05/05 22:58 ID:97rnKhkD
誰か包絡線が何であれで求められるか教えてくれー

219 :大学への名無しさん:04/05/05 23:21 ID:ilw5Poem
結局>>142の結論ってどうなの?


220 :大学への名無しさん:04/05/05 23:51 ID:3zvRVlaF
>>143で結論出てる。

>>142は方針は合ってるけど
「13C4(1/4)^4(3/4)^9」の「(1/4)^4(3/4)^9」の部分がおかしくて
ハートを4枚引いて次にハート以外を9枚引くのは
(13/52)*(12/51)*(11/50)*(10/49)
*(39/48)*(38/47)* … (32/41)*(31/40)
と、こうするべき。これは>>143のC[39,9]/C[52,13]と等しい。
あとは組み合わせの分として13C4をかければ良い。


221 :大学への名無しさん:04/05/06 00:01 ID:jrEk5x/N
>>113
>>114
遅くなりましたが、ありがとうございました〜。
明日学校でこれをみんなに説明せんにゃあならんので、ホント助かりました。

222 :大学への名無しさん:04/05/06 00:02 ID:+NQKTL0h
>>143は(13枚のハートから4枚選ぶ場合の数)*(39枚の残りから9枚選ぶ場合の数)/(52枚全部から13枚選ぶ場合の数)と考えてもOK。

223 :大学への名無しさん:04/05/06 00:27 ID:1oyCrTb+
>>218
あれって言われても‥具体例を。

224 :大学への名無しさん:04/05/06 13:09 ID:RHY4QaGF
大学受験板って高校の問題を聞いても良いんですか?

225 :大学への名無しさん:04/05/06 15:54 ID:N15HXbcF
>>224
死ね

226 :大学への名無しさん:04/05/06 21:51 ID:TG4MXvq5
>>224
当たり前だろうが。ここは数学の質問スレだ。

227 :大学への名無しさん:04/05/06 21:53 ID:JXmOmI8A
2の1999乗は何桁の数になるか?ただし、log10底5=0、6990である

この問題ですが、log10底2の数が分かればできるんですが、ちょっと応用入ると分かりません。解をお願いします。

228 :大学への名無しさん:04/05/06 21:57 ID:zdkpJldG
logは常用対数だと思って。

log2
=log(10/5)
=log10-log5
=1-0.6990
=0.3010

229 :大学への名無しさん:04/05/06 21:59 ID:zdkpJldG
ちょっとだけ解説いれるつもりがミスっておくってしまった。

log2の値が与えられてlog5を導くのは常套のパターン。
今回はそれの逆のパターンになってるけど基本はおなじってことだな

230 :大学への名無しさん:04/05/06 23:40 ID:Ad9MCzUL
1の-1乗ってなんでしょうか?

231 :大学への名無しさん:04/05/06 23:50 ID:Hwb0sbLt
1

232 :大学への名無しさん:04/05/06 23:53 ID:mVR0ghLU
x>0、y>0、4/x+9/y=1のとき、√x+y(x+yに√かかってます)の最小値を求めよ。

某経済大の過去門ですが、答えおねがいします

233 :大学への名無しさん:04/05/06 23:58 ID:Ad9MCzUL
>>231
1分の1ということで、1?
じゃあ-2乗も1?

234 :大学への名無しさん:04/05/06 23:59 ID:mVR0ghLU
>>233
1は何乗しても1ですよ

235 :○○社:04/05/07 00:02 ID:qiPjiyNg
>>233
お前オモロイな

236 :大学への名無しさん:04/05/07 00:05 ID:d0AzOYng
>>232
コーシーシュワルツの不等式より
(4/x+9/y)(x+y)>=(2+3)^2
よって√(x+y)の最小値は5
等号成立は、√(4/x) : √(9/y) = √x : √y のとき
(具体的に求めるとx=10,y=15のとき)

237 :大学への名無しさん:04/05/07 00:10 ID:OkYRkRdr
>>236
コーシーシュワルツの不等式って覚えていたほうがいいのですか?
文型です。

238 :大学への名無しさん:04/05/07 00:11 ID:t+qSQPGM
>>235
バカということでしょうか?
それとも、余計な事考えすぎってことでしょうか?

239 :○○社:04/05/07 00:12 ID:qiPjiyNg
コーシーシュワルツを使う解答はじめて見た。
感動した!

240 :238:04/05/07 00:15 ID:t+qSQPGM
これで最後にしますね。
0の0乗って、1ではないですよね?

241 :大学への名無しさん:04/05/07 00:18 ID:jbvLOfMO
定義されてない

242 :大学への名無しさん:04/05/07 00:22 ID:XVE3acIb
>>240
君やるねぇ…w
0^0は高校数学では定義されません
ただ僕は一回それに関する学術論文(和訳済み)を厨のとき読んだな…中身は覚えてないが結果では0又は1という結果だったぞ

243 :大学への名無しさん:04/05/07 00:25 ID:HOM3E+hr
1/0は定義ない
0/1=0

244 :大学への名無しさん:04/05/07 00:27 ID:XVE3acIb
>>243
…周知の事実を何故?

245 :大学への名無しさん:04/05/07 00:33 ID:d0AzOYng
>>237
わりと使い道が多様なので知ってると便利。
ベクトルの内積と関連づけておくと吉。
ヘロンの公式よりは使う機会多いと思われ。

246 :大学への名無しさん:04/05/07 00:38 ID:XVE3acIb
ねぇ、フェルマーの最終定理って、出るかな?
…なんかそろそろ来そうな予感((((゜Д゜;))))

247 :大学への名無しさん:04/05/07 01:14 ID:2AqMOeC7
>>246
 何度か似たようなのは出てるよ。
 信州大の・・・えっと、1997〜1999のどれか。

 あとは・・・・・・忘れた。千葉大?
 まぁ結局は結構簡単な整数問題。

248 :大学への名無しさん:04/05/07 01:38 ID:XVE3acIb
工エェ(´д`)ェエ工
…なーんだ、証明じゃないなら良しだょ

249 :大学への名無しさん:04/05/07 01:41 ID:2AqMOeC7
>>248
 ??
 「ふぇるまーのさいしゅうていりをしょうめいしなさい」
 って問題が出るかってこと?

 残念ながら数学科大学で4年学んでも証明できないだろうと思うよ。
 証明に300年かかっただけあってずいぶん難しい内容を含むらしい。
 もちろん僕もできない。本読んだだけ。
 志村予想自体が理解できませんですた。

250 :大学への名無しさん:04/05/07 01:47 ID:XVE3acIb
だょね…
ぃゃ、入試でとっかかりの部分とかヒント付きでってやつね…高校時の物理教師が出してきた…
最終定理自体は知ってたけどいくらヒントがあってもあれの証明は無理だと思ったからw

251 :大学への名無しさん:04/05/07 01:50 ID:2AqMOeC7
 んー、本読んだだけのカジリぺーぺーだけどさ、”とっかかり”とかそんな
 次元に無いと思う。高校じゃとても習わない概念から生み出される予想とその証明、
 ヒントとか無意味になるほど複雑な気がしたよ。

 x^n+y^n=z^n  綺麗な形だなぁ〜 くらいの感じで・・・。

252 :大学への名無しさん:04/05/07 02:03 ID:2AqMOeC7
 さっき言った「似たような」ってのは、
 例えばn=3のときフェルマーの最終定理が確かに成り立っていることを証明せよ
 みたいな感じの問題ね。

253 :大学への名無しさん:04/05/07 02:04 ID:XVE3acIb
ん…確かに洗練された形だょね…
うちの物理教師の持論は
数学って物は美しい答えが結論だ
なぜなら自然の物は洗練された形をしているからだ

でしたw
だからといって高校生に解かせようってのが間違い。
僕は一行も出来ず…_| ̄|○

254 :大学への名無しさん:04/05/07 02:04 ID:idTFKkI3
曲線のグラフを描くときに漸近線の求め方としてlim[x→+∞]f(x)/xまたは
lim[x→-∞]f(x)/xを求める方法が一般的ですが、lim[x→+∞]f(x)=0または
lim[x→-∞]f(x)=0となる場合も多いです。このような場合、前者の方法で
解こうとすると解けることは解けますが、極限の変形の仕方によっては計算ができ
なくなったりします。前者と後者の方法をどちらを使えばより速いか見分けるには、
やはり増減表から漸近線のおおよその見当を立てて極限の計算をするのでしょうか?


255 :大学への名無しさん:04/05/07 02:07 ID:XVE3acIb
(・∀・)つ〃∩へぇ〜
そんな感じの奴か…
うーむ、しかし僕の頭じゃ即答できん…悲すぃ

256 :大学への名無しさん:04/05/07 02:12 ID:XVE3acIb
>>255>>253に当てたもの…スマソ

>>254
うーむ…僕は極限が取れるまで変形を繰り返すょ…
あ、でも増減表が先だなぁ…
あんましあてにならんね、スマソ

257 :大学への名無しさん:04/05/07 02:14 ID:XVE3acIb
たびたび悪いが
253→252

258 :大学への名無しさん:04/05/07 02:50 ID:+rzDJIEL
>>254
グラフを描くならx→±∞での様子を調べるでしょうから
(定義域の境界での様子も)
そのときにx軸やy軸に平行な漸近線はわかるはず
後はそうでない漸近線探しだからf(x)/xを考える


フェルマーの最終定理はn=4のときの方がn=3のときよりも簡単
n=3のときが自力で解けたら自慢していいくらい

259 :大学への名無しさん:04/05/07 09:42 ID:xBRfwpDE
>>258
 信州だいで出たのは、n=3のときの”一部”だったわ。

260 :大学への名無しさん:04/05/07 17:01 ID:Nr5XhaW7
数Uの積分で、6分の1公式について教えてください。
1/6|A|L^3 って3次の放物線と2次の放物線でも使えるんでしょうか?
3次関数と2次関数が1点で共通の接線を持ち、
囲まれた面積を出せという問題なんですけど。

261 :238:04/05/07 17:04 ID:t+qSQPGM
>>242
そうなんだ、ありがとう。
実はその質問、昨日予備校の先生に聞いたら『それは考えない』といわれて
いまいちだった。

262 :大学への名無しさん:04/05/07 17:49 ID:kghkIUCx
>>260
まず、3次の放物線なんてものは無い。次に、後半の面積の係数は6分の1ではない。
さて、質問の件だが、同じものではない。次に示しておくが、今後は自分で導出出来るようにしておくべきである。
三次関数F:y=f(x)=ax^3+bx^2+cx+d (a≠0) と二次関数G:y=g(x)=px^2+qx+r (r≠0) が、
点A(α,f(α))で接し、点Aとは異なる点B(β,f(β)) (ただし、f(α)=g(α)、f(β)=g(β)) で交わるとすると、
f(x)-g(x)=a(x-α)^2(x-β) であるから、FとGで囲まれた部分の面積Sは
S=|∫[x=α,β]{f(x)-g(x)}dx|=|a∫[x=α,β]{(x-α)^2(x-β)dx|=|a∫[x=α,β]{(x-α)^2{(x-α)-(β-α)}dx|
=|a∫[x=α,β]{{(x-α)^3-(β-α)(x-α)^2}dx|=|a[(1/4)(x-α)^4-(1/3)(β-α)(x-α)^3][x=α,β]|
=(1/12)|a|(β-α)^4
(部分積分法を用いてもよし)
四次関数が最高次数関数のとき、二点で接する他の関数とで囲む部分の面積も導出してみるとよい。

>>261
lim[x→+0] x^0 =1
lim[x→+0] 0^x =0  

?? (ry

263 :260:04/05/07 18:09 ID:Nr5XhaW7
>>262
ありがとうございました。
京都大の過去問で6分の1公式でやってみたら
正解と同じ答えが出てしまったんで悩んでました。
そのときは偶然出たんでしょうね。

264 :大学への名無しさん:04/05/07 18:39 ID:HOM3E+hr
行列のトレースってなに?

265 :大学への名無しさん:04/05/07 18:57 ID:Kyt6aEz2
>>264
そのくらいぐぐるか本見ましょうよ。

266 :大学への名無しさん:04/05/07 19:05 ID:HOM3E+hr
しつれいしますた

267 :大学への名無しさん:04/05/07 19:08 ID:YQ0B6BQQ
行列{(-6,-9),(1,0)}のn乗を求めよって問題ですが
帰納法でやろうとしてもグチャグチャになるし
対角化もできないしで困ってます
どなたか教えてくださいm(_ _)m

268 :大学への名無しさん:04/05/07 19:32 ID:BLOSUnxG
>>267
やってないからしらんけど、ケーリーハミルトンつかってみ

269 :254:04/05/07 20:30 ID:dH1vVK7q
>>256,>>258
ありがとう。

270 :大学への名無しさん:04/05/07 20:59 ID:edHEOn7x
実数とは、正の数と0ですか?分数とかは除くの知ってるんですが。

271 :大学への名無しさん:04/05/07 21:00 ID:OPT0wRt/
全然違う(w

272 :大学への名無しさん:04/05/07 21:30 ID:t+qSQPGM
>>270
自然数と間違えてない?
あれ、自然数に分数って入ったっけ?

273 :○○社:04/05/07 21:40 ID:26df8EiZ
>>270
実数は負の数も入るよ。
ってか、大幅に間違ってるな。
分数も実数だし、無理数(ルートのやつ)も実数。

274 :大学への名無しさん:04/05/07 21:43 ID:148jOcvv
三角形の相似条件を複素数平面であらわすと
△ABCと△A'B'C'が相似のときA(α)B(β)C(γ)A'(α')B'(β')C'(γ')
とすると
(γ-α)/(β-α)=(γ'-α')/(β'-α')
であるということを証明してください

275 :大学への名無しさん:04/05/07 21:50 ID:BLOSUnxG
>>274
偏角考えればわかると思うよ。めんどいかもしれないけど。

276 :大学への名無しさん:04/05/07 21:51 ID:syTYyVPF
両辺のargは∠BAC=∠B'A'C'から等しい
両辺の絶対値はAB:A'B'=AC:A'C'から等しい

277 :大学への名無しさん:04/05/07 21:52 ID:QhYpI+bc
>>274
∠BAC≠∠B'A'C' であるような相似の場合は不成立。
条件が甘いよ。

278 :大学への名無しさん:04/05/07 22:04 ID:ptJMu5tL
低レベルかもしれませんがおねがいします。確立です。

ジョーカーを除く52枚のトランプの中から2枚引くとき
その2つの数の積が5以上になる確率。

記述式で満点が取れる回答でおねがいします。

279 :大学への名無しさん:04/05/07 22:38 ID:ixUx/ncF
>>277
△ABC∽△A'B'C'

280 :大学への名無しさん:04/05/07 22:39 ID:pgagoymj
>>277
ふつう△ABCと△A'B'C'が相似と書かれていたら対応順に
なっていると思うが

>>278
余事象考えて2つの数の積が4以下
場合分けして
1-1、1-2、1-3、1-4、2-2
答案は練習してください

281 :大学への名無しさん:04/05/07 22:48 ID:ptJMu5tL
>>280
マーク(ハート、スペード、・・)は1-1と2-2の場合はそれぞれ6通りで
1-2,1-3,1-4の場合はそれぞれ16通りで計60通り。
1-60/1326=1266/1326=211/221
であってますかね!?

282 :大学への名無しさん:04/05/07 22:57 ID:SxubaXcr
>>270
なんかワロタ 実数は虚数以外の数。複素数ってのは実数と虚数。例えば1+3iとか
が虚数。でいいんだよね?

283 :大学への名無しさん:04/05/07 23:08 ID:XVE3acIb
a+biで表す数(a∈R、b∈R)が複素数。
だから例えば
3(aが3、bが0)も、
3+2i(aが3、bが2)も
2i(aが0、bが2)も
複素数。
その中で
a=0、b≠0の時を純虚数、
a≠0、b=0の時を実数と定義する
…もう少ししっかりしようぜ、受験生。

284 :大学への名無しさん:04/05/07 23:18 ID:HOM3E+hr
普通の数Aの教科書って隣接二項漸化式とか難しい漸化式も載ってるの?
旧家庭


285 :大学への名無しさん:04/05/07 23:30 ID:XVE3acIb
隣接二項って…あたりまえじゃない?どうやって一項で漸化式つくるんだょぅ?
隣接三項間漸化式、なら分かるが…
これは地方国立なら出るんじゃないの?

286 :大学への名無しさん:04/05/07 23:33 ID:S70rpsUo
>>283

「a≠0、b=0の時を実数と定義する」というのは話が循環してるぞ。


287 :大学への名無しさん:04/05/07 23:33 ID:HFvIQ09I
(x+2)(x+1)(x−3)は(x+2)(x+5)で割り切れる理由を教えてください。

288 :大学への名無しさん:04/05/07 23:38 ID:XVE3acIb
>>286
複素数の中での実数の位置の定義だからね…
実数そのものの定義じゃないょ

289 :大学への名無しさん:04/05/07 23:38 ID:HFvIQ09I
つけたし忘れました。
剰余の定理以外で証明できますか?

290 :大学への名無しさん:04/05/07 23:39 ID:pgagoymj
実数と同一視できる、がいいかな

291 :○○社 ◆rRQ3gXBJ5o :04/05/07 23:39 ID:26df8EiZ
>>289
実際割ってみたらいいよ。

292 :大学への名無しさん:04/05/07 23:41 ID:c3xHs5H2
>>273
ってことは、実数=すべての数 ってことですかな?

293 :あぽ:04/05/07 23:41 ID:+qirOYqq
>>283
それだと0が実数じゃない事になる(´д`;

294 :292:04/05/07 23:43 ID:c3xHs5H2
282さんが答えてくれてたので、分かりましたw
これでも、今年センター受けるって・・。


295 :大学への名無しさん:04/05/07 23:45 ID:XVE3acIb
>>286
b=0だけで十分でした、スマソ

296 :大学への名無しさん:04/05/07 23:53 ID:HFvIQ09I
>>291
サンクス

あともう一つ質問なんですが

x^2-2x+5=0は1+2iを解に持つ
f(x)=x^3-x^2+ax+bが1+2iを解にもつ時
f(x)がx^2-2x+5でわりきれるのは何故なんですか?

297 :あぽ:04/05/07 23:59 ID:+qirOYqq
f(x)=0は1-2iも解にもつから、f(x)は因数に{x-(1+2i)}{x-(1-2i)}つまりx^2-2x+5をもつ。
だから割り切れる(・∀・ )!

298 :296:04/05/08 00:04 ID:9Gj2Vr/f
すみません。よくわかりません。

299 :大学への名無しさん:04/05/08 00:07 ID:qFSjm8hT
x^2-2x+5=0…@の解は
1+2i、つまり虚数解ですな
だからもう一つの解は共役な複素数1-2iを解にもつよね?
だから@は
{x-(1+2i)}{x-(1-2i)}=0と書けるよね
んで、f(x)も1+2iを解にもつ、つまり共役な複素数である1-2iも解の一つだ
と言うことはf(x)は
{x-(1+2i)}{x-(1-2i)}
を因数に含むことが分かる。
だから@でf(x)は割り切れる、どうかな?

300 :大学への名無しさん:04/05/08 00:10 ID:9Gj2Vr/f
>>299
わかりました!ありがとうございます!

301 :大学への名無しさん:04/05/08 00:15 ID:9Gj2Vr/f
すみません。本当に最後の質問です。
>>287って割り切れないですよね?

302 :○○社 ◆rRQ3gXBJ5o :04/05/08 00:16 ID:ScDaK/ZC
>>301
そうだろうな。

303 :大学への名無しさん:04/05/08 00:20 ID:qFSjm8hT
>>301
うん…そだね…多分…いや…かなり…無理ぽ

304 :weapon ◆RRlBLdA0dk :04/05/08 00:21 ID:HXgd2D7X
実数の定義は正確には大学の範囲だけど・・・
高校の教科書ではどうなってるんだろう?

305 :大学への名無しさん:04/05/08 00:27 ID:qFSjm8hT
>>304
実数⇒虚数でない
(゚д゚)ポカーン

306 : ◆wXq1Te3XSw :04/05/08 00:27 ID:+bCn+dm6
突然ですが、明日板書の問題が解けなくて困っています

{x|f(x)=x}=M、{x|f(f(x))=x}=Nという2つの集合がある。
関数y=f(x)が実数関数で単調増加のとき,M=Nを証明せよ

という問題です。M→Nは明らかなんですが、N→Mが証明できません
ご教示願えませんか?

307 :大学への名無しさん:04/05/08 00:28 ID:9Gj2Vr/f
>>301-302
どうもです

308 :大学への名無しさん:04/05/08 00:35 ID:qFSjm8hT
>>306
工エェ(´д`)ェエ工
なんだこりゃ…
久々に見たな、嫌いな問題。_| ̄|○
努力はするが漏れはダメポだぁ…

309 : ◆wXq1Te3XSw :04/05/08 00:37 ID:+bCn+dm6
甲陽高校3年理系数学の板書なんですが・・・


310 :○○社 ◆rRQ3gXBJ5o :04/05/08 00:37 ID:ScDaK/ZC
f(x)が単調増加って
f(x)=x
から自明な気がするが、もしや俺の勘違い?

311 :○○社 ◆rRQ3gXBJ5o :04/05/08 00:38 ID:ScDaK/ZC
神降臨?

312 : ◆wXq1Te3XSw :04/05/08 00:39 ID:+bCn+dm6
>>310
M→Nのときは自明ですが、N→Mのときは違うと思います

313 :大学への名無しさん:04/05/08 00:41 ID:jZM3rOKM
単調増加の定義は?

314 :大学への名無しさん:04/05/08 00:43 ID:qFSjm8hT
>>312
N→Mはf(x)が分からないから難しいんだょなぁ…

315 : ◆wXq1Te3XSw :04/05/08 00:43 ID:+bCn+dm6
>>313
(y=f(x)の傾き)≧0がすべてのxについて成り立つこと?

316 :元・西狂示信者OB ◆W3w2sjgtmc :04/05/08 00:45 ID:ZczrXjry
http://www.crossroad.jp/mathnavi/

既出かもしれないが・・・微妙なもん知ってる・・・・
上手く使えれば役に立つだろうと思う・・・・?
この板の後輩達に・・・

317 :weapon ◆RRlBLdA0dk :04/05/08 00:46 ID:HXgd2D7X
>>306
p∈N⇒f(f(p))=p⇒f(p)=q,f(q)=pとなるqが存在⇒p≦qとすれば単調増加より
f(p)≦f(q)⇔q≦p。よってp=q。q≦pとしても同じ。⇒f(p)=p⇒p∈M
∴N⊂M

318 : ◆wXq1Te3XSw :04/05/08 00:49 ID:+bCn+dm6
>>317
ありがとうございます。


319 : ◆wXq1Te3XSw :04/05/08 00:51 ID:+bCn+dm6
>>317
f(f(p))=p⇒f(p)=q,f(q)=pとなるqが存在
ってとこがイマイチ理解できないんですが、講釈願えませんか?

320 :○○社 ◆rRQ3gXBJ5o :04/05/08 00:53 ID:ScDaK/ZC
超ハイレベルなインターネッツですね。

321 :大学への名無しさん:04/05/08 00:57 ID:D1CnJKTf
a∈Nかつa not∈Mのaが存在すると仮定すると
f(f(a))=a≠f(a)である。
f(x)は単調増加なので
a<f(a)と仮定するとa<f(a)<f(f(a))∴a=f(f(a))に矛盾
a>f(a)と仮定しても同様
∴背理法よりN⊃M


322 :321:04/05/08 01:00 ID:D1CnJKTf
>>317を言い換えただけの気がするけど…まあいいか。

323 : ◆wXq1Te3XSw :04/05/08 01:00 ID:+bCn+dm6
>>321
ありがとうございます。

324 :大学への名無しさん:04/05/08 01:01 ID:qFSjm8hT
あ!やっと分かった
f(f(x))=xをワンクッションおいて別々の式にしてるんだぁ

325 :weapon ◆RRlBLdA0dk :04/05/08 01:21 ID:HXgd2D7X
甲陽ではA⇒Bの真偽が(¬A)∨Bの真偽と同じことを授業でやるのかな?

326 : ◆wXq1Te3XSw :04/05/08 01:25 ID:+bCn+dm6
化学でやりました。数学でもやったかもしれないけど記憶にない・・・

327 :weapon ◆RRlBLdA0dk :04/05/08 01:28 ID:HXgd2D7X
化学で?
どんなとこで出てくるんですか?

328 :大学への名無しさん:04/05/08 03:35 ID:pg0hcJa8
ベクトルの内積において
A・(B+C)=A・B+A・Cの分配則が成り立つことを証明せよ。
っていう宿題がだされたんだけど誰か教えてください。

329 :大学への名無しさん:04/05/08 04:10 ID:InNVj6fr
>>328
普通にそれぞれ成分に直せば両辺同じ形になる
成分はただの実数だから分配則は成り立つからね
A=(a1,a2)・・・って置いてやってみて

330 :大学への名無しさん:04/05/08 09:19 ID:w2U5eRpO
sinx+1=-2cosx(0≦x<2π)

この方程式を解きたいんですが、図にすると解が二つあるのに片一方しかわかりません
もう一方の解はどのようにだすか誰か教えてください

331 :大学への名無しさん:04/05/08 09:22 ID:nuGwVups
 ?
 解ける気がしない。

332 :大学への名無しさん:04/05/08 09:24 ID:w2U5eRpO
そうですか・・・・
お手数おかけしました、ありがとうございます

333 :大学への名無しさん:04/05/08 09:26 ID:bf4y1eiR
>>330 両辺2乗してcosx消去してみれ

334 :大学への名無しさん:04/05/08 09:29 ID:nuGwVups
 角度までは出さなくていいなら・・・

 両辺にじょうして s^2+2s+1=4c^2 → s^2+2s+1=4-4s^2
 →5s^2+2s-3=0 →(5s-3)(s+1)=0 sinx=3/5、-1
 これを元の式に代入すると、sinx=3/5なる解に対してcosx=-4/5が適当であることが分かる。

 よって(sinx,cosx)=(3/5,4/5)、(-1,0)

335 :331あーんど334:04/05/08 09:30 ID:nuGwVups
最後たいぷみす
 (3/5,-4/5)

336 :大学への名無しさん:04/05/08 09:30 ID:w2U5eRpO
分かりました!!
解説ありがとうございました(^ヮ^)

337 :331あーんど334:04/05/08 09:32 ID:nuGwVups
 そういうの「解」ってあんまり言わないから気ぃつけてね・・・。

338 :大学への名無しさん:04/05/08 09:36 ID:w2U5eRpO
3/2πとsinα=3/5、cosα=-4/5を満たす角度αってしときます
ほんとにありがとうございました!!

339 :大学への名無しさん:04/05/08 10:00 ID:fAQdVepY
>>330
当然、合成だろ?! (ry
sinx + 1 = -2cosx ⇔ sin(x+α) = -1/√5 (但し、sinα = 2/√5、cosx = 1/√5、0<α<π/2 )
ここで、sin(π/2-α)=1/√5 より α≦ x+α < 2π+α では
x+α=π+π/2-α、2π-(π/2-α) ⇔ x=3π/2-2α、3π/2

340 :大学への名無しさん:04/05/08 10:13 ID:bf4y1eiR
330は内積でも解けるな

341 :大学への名無しさん:04/05/08 10:31 ID:fG511bi3
ベクトルって何??


342 :大学への名無しさん:04/05/08 10:33 ID:fG511bi3
 ベクトルだれかおしえて


343 :大学への名無しさん:04/05/08 10:35 ID:nuGwVups
 やじるし。

344 :大学への名無しさん:04/05/08 10:37 ID:fG511bi3
矢印?

345 :大学への名無しさん:04/05/08 10:45 ID:nuGwVups
 向きと大きさがあるもの。
 風に例えられることが多い。

346 :大学への名無しさん:04/05/08 11:28 ID:jKaq2gLA
>>345
無視しろよ・・・

347 :大学への名無しさん:04/05/08 11:30 ID:nuGwVups
 え、1年生かも知れないじゃん!たまにそーゆーの気になるじゃん!
 俺まだ複素数習ってないときに教師がチラッと「まぁx^2=-1にも解があると考えれるんだけどね、虚数っつって」
 って言われてちょー気になったよ。

 あれじゃん、「まぁこれは大学で習うんだけど・・・」とか言われると無性に気になんない?

348 :大学への名無しさん:04/05/08 14:53 ID:i3bnWxlK
>>347
わかる・・・
sinの値とかテーラー展開分かると出せるようになるとか聞いて気になった。
確かに高校の内容じゃないかもしれないけどムダじゃないとは思う。
x→0のときにsin(x)→0とかも、要するに1次近似だって事がわかったし。

349 :大学への名無しさん:04/05/08 15:35 ID:WlZ7s0UL
a、b、cは整数としa^2+b^2=c^2とする。a、bのうち少なくとも1つは3の倍数であることを証明せよ

青チャ例題230ですが、よく分かりません。できれば背理法使うやりかたで教えて下さい。。

350 :大学への名無しさん:04/05/08 15:53 ID:7D7iiNrE
>>349
3の倍数でないもの 3n+k (k=1,2)とでもおいて、
全部に代入すればいいだろ

351 :大学への名無しさん:04/05/08 15:53 ID:bf4y1eiR
>>350 どんな整数2乗も3で割ったあまりは0(3の倍数のとき)or 1(3の倍数
でないとき)であるから右辺を3で割った余りは0or 1。もしa,bが両方とも3
の倍数でないとするとその2乗を3で割った余りは1となるので左辺を3で割った
余りは2となり矛盾

352 :大学への名無しさん:04/05/08 15:54 ID:bf4y1eiR
>>351 すまん>>350>>349

353 :大学への名無しさん:04/05/08 16:00 ID:qFSjm8hT
a、bのどちらも3の倍数でないとすると
a=3m+1
又はa=3m+2
b=3n+1
又はb=3n+2
(m=0、1、2…、n=0、1、2…)
[T]a=3m+1の時
a^2=9m^2+6m+1
⇒a^2=3(3m^2+2m)+1
[U]a=3m+2の時
a^2=9m^2+12m+4
⇒a^2=3(3m^2+4m+1)+1
また、bについても形は同じになります
つまり、3の倍数でない自然数の2乗は必ず3で割って1余る。
つまり左辺a^2+b^2は3で割って2余る数です
だが、c^2は、3で割って1余る数なので矛盾する
よってa、bのどちらも3の倍数でない時成り立たないので、a、bの少なくともどちらか一方が3の倍数である必要がある
(ここで3の倍数の時の証明もしておくとよい)

354 :大学への名無しさん:04/05/08 16:02 ID:qFSjm8hT
>>351
5÷3は3余り2ですが何か?

355 :大学への名無しさん:04/05/08 16:03 ID:qFSjm8hT
>>354は無かったことに…スマソ

356 :大学への名無しさん:04/05/08 16:06 ID:bf4y1eiR
>>351 訂正 どんな整数2乗→どんな整数の2乗
>>354 ご指摘どうも

357 :大学への名無しさん:04/05/08 16:14 ID:bf4y1eiR
>>349 ちなみにわたしが書いたのはどんなの整数2乗も3で割ったあまりは0
(3の倍数のとき)or 1(3の倍数でないとき)の証明をいれていないので、353
氏のやり方がよいかとおもいます。証明はすべての整数は整数nを用いて3n,or
3n±1で表されることを利用して自分でやってみてください。

358 :大学への名無しさん:04/05/08 16:44 ID:MlH5hVc1
次の関数の第3次導関数を求めよ
f(x)=x(5x+1)(7x^4-1)
が420x^2(x+1)という答えなのですがどうしても出ません
この答えになるように計算するにはどうすればいいのでしょうか

359 :大学への名無しさん:04/05/08 17:28 ID:dwhjBJBD
>>358
答えって 420(x^2)(10x+1)じゃない?
f(x)の式を展開して、それを3回微分すればでるよ

360 :大学への名無しさん:04/05/08 17:53 ID:MlH5hVc1
>359
そうですよね。では答えが誤植ということでしょう…
どうもありがとうございます

361 :大学への名無しさん:04/05/09 13:13 ID:gLEMX+n/
√−2×√−3=√6  ですよね

ところが√−2=√2i  √−3=√3iと同値なので先の式は
√2i×√3i=√6i^2=−√6 となり先の式と矛盾します。

一体どうなってるのでしょうか?


362 :大学への名無しさん:04/05/09 13:35 ID:KCLIc09s
>>361
数学板でもマルチしてるな死ね
考える脳みそあんのか?お前
中学校の教科書から読み直せあほ

363 :大学への名無しさん:04/05/09 13:37 ID:9Eh1HlYB
>>361
√−2×√−3=√6 が間違いらしい。
√a×√b=√ab は、a>0, b>0 のときに成り立つ式。

364 :363:04/05/09 13:39 ID:9Eh1HlYB
>>361
ホンマや。マルチや。答えて損した。

365 :大学への名無しさん:04/05/09 13:41 ID:gLEMX+n/
>>362
>>363
>>364

はウヨクw

きもいよ氏ねww


366 :大学への名無しさん:04/05/09 14:51 ID:CCm/O8lJ
よろしくお願いします。
『△ABCの内心をDとして、ADの延長の点Eが
線分BCをP:1−P(0<P<1)に内分する時、P:1−P=AB:AC』

の根拠が分からないのですが、どなたか示して頂けないでしょうか。

367 :大学への名無しさん:04/05/09 15:58 ID:8o9bzSO8
>>366二等分線の定理

368 :大学への名無しさん:04/05/09 16:02 ID:e7GaKKSP
半径3の円Aと円B:x^2+y^2=4との異なる二点の共有点を通る直線がC:6x+2y+5=0となるとき円Aの中心の座標は?
条件より、円Aの方程式はx^2+y^2−4+K(6x+2y+5)=0と表せるみたいなんですけどなぜですか?
円B−1×(円A)=直線C、移項して円A=円Bー直線Cと考えてKは−1だと思うんですけど。

369 :大学への名無しさん:04/05/09 16:24 ID:UJsLg/SS
>>368
解法パターンとして覚えましょう。

x^2+y^2−4+K(6x+2y+5)=0
これが円を表していること(ただし中心と半径はKによって変化する)、
これが円Bと直線Cの交点を通ることはわかるでしょう?
(円Bと直線Cの交点を(x,y)=(x1,y1), (x2,y2)とすると、上の式を満たすから)

Kは半径が3になるように決めてください。

370 :大学への名無しさん:04/05/09 16:26 ID:AT6qnTdw
解法パターンってやっぱ覚える必要あるの?

371 :大学への名無しさん:04/05/09 16:31 ID:OA8mtSy0
>>368
論理の問題じゃない?

  f(x)=0 ∧ g(x)=0
⇔ f(x)+k*g(x)=0 ∧ f(x)=0 

372 :大学への名無しさん:04/05/09 16:42 ID:MDGpiFem
>>370
天才なら、その場で考え出せるから覚える必要はない。
天才じゃなかったら、覚えなきゃ問題は解けない。
(だから、和○秀樹さんは青チャートを覚えろって言っている。)

368については、必ずしも覚える必要はない。
BとCの連立方程式を解いて交点を求め、その2点を通る
半径3の円を求めることはそんなに難しくない。
でも、あのような式で表せるというパターンを知っていれば、
面倒な計算から開放され、解答時間も短縮できる。

>>371
K≠0のときですね?

373 :大学への名無しさん:04/05/09 17:00 ID:e7GaKKSP
>>369
何とかわかりました。ありがとうごさいます。
>>371
何ですか?そのむずかしそうなの…バカなんでわかりません。すみません

374 :大学への名無しさん:04/05/09 17:17 ID:Us7cV9Tj
なぜ等比数列の和は公比を掛けて差とするのかわかりません
レスお願いします


375 :大学への名無しさん:04/05/09 17:21 ID:WjDW+4D6
>>374
 うまくいくから。
 S=1+3+9+27+・・・+3^(n-1)
3S= 3+9+27+・・・+3^(n-1)+3^n
 引き算して2S=3^n−1 よってS=(3^n−1)/2

 何度見てもうまい。テクニックの問題。天才が閃いたから。

376 :大学への名無しさん:04/05/09 17:24 ID:INMxBaGz
>>374
Σ[k=1,n]ar^(n-1)
=aΣ[k=1,n]r^(n-1)
=(a/(r-1))Σ[k=1,n]{r^k-r^(k-1)}
=(a/(r-1)){Σ[k=1,n]r^k-Σ[k=1,n]r^(k-1)}
=(a/(r-1)){Σ[k=2,n+1]r^(k-1)-Σ[k=1,n]r^(k-1)}
=(a/(r-1))(r^n-1).

377 :大学への名無しさん:04/05/09 17:25 ID:INMxBaGz
>>375
階差の和に帰着しようとしたからでは?

378 :大学への名無しさん:04/05/09 17:27 ID:TQegwTpG
>>374
初項a、公比rの等比数列の初項から第n項までの和S_nは
S_n = a+ar+ar^2+・・・+ar^(n-1)
だが
>なぜ等比数列の和は公比を掛けて差とするのかわかりません
君は何を言いたいのだ?
何をしたいのだ?
そして、それをするのに何が障害となっているのだ?

379 :374:04/05/09 17:28 ID:Us7cV9Tj
レスありがとうございます

380 :大学への名無しさん:04/05/09 17:39 ID:NTVA+kE7
ばかな俺に救いの手を・・・
0≦θ≦2/3Πのとき、次の関数の最大値最小値をもとめよ
y=sin(θーπ/3)って問題なんですけど・・
誰か教えてください。。。

381 :大学への名無しさん:04/05/09 17:40 ID:WjDW+4D6
>>380
 そのまま解答かくのは簡単だけど、簡単すぎて逆に心配。
 がっこの宿題か何か?

382 :大学への名無しさん:04/05/09 17:46 ID:NTVA+kE7
はい 
簡単なはずです
今二年で数学の先生まじくそです
やりかたくわしく解説してください

383 :大学への名無しさん:04/05/09 17:47 ID:WjDW+4D6
 0<θ<πのときsinθの最大最小は?
 とかなら解けるの?これも解けない?

384 :大学への名無しさん:04/05/09 17:50 ID:NTVA+kE7
最大は1で最小が0ですか?

385 :大学への名無しさん:04/05/09 17:55 ID:TQegwTpG
>>374
和の値を求めたかったんだな?
S_n = a+ar+ar^2+・・・+ar^(n-2)+ar^(n-1)  −(*)
これでは ・・・ の部分が未処理で値とはいえないわけだ。
それなら ・・・ を処理可能な形(等差数列の場合は一定値の和にする)にするか、
消しちまえばよいわけね。で、(*)の両辺に公比rを乗じて(*)と並べてみると
 S_n = a+ar+ar^2+   ・・・+ar^(n-2)+ar^(n-1)
rS_n =  ar+ar^2+ar^2+    ・・・+ar^(n-1)+ar^n
辺々引くと
(1-r)S_n = a(1-r^n)
となり ・・・ の部分が消えることがわかる。
さて
r≠1 のときは S_n = a(1-r^n)/(1-r)
となるが、r=1 のときは(*)に立ち返って
S_n = a+a+a+・・・+a =an
となるな。

386 :大学への名無しさん:04/05/09 17:56 ID:WjDW+4D6
>>384
 あぁまぁ最小は無いんだけど。
 0≦θ≦2/3Πのとき、次の関数の最大値最小値をもとめよ
y=sin(θーπ/3)
 θ−π/3を何か別の文字に置きたくなるよね、ってかそうなって。
 θ−π/3=xとおくと、xの範囲は-π/3〜π/3
 よって最大=√3/2(x=-π/3、θ=0) 最小=−√3/2(x=π/3、θ=2/3π)

387 :大学への名無しさん:04/05/09 18:00 ID:INMxBaGz
>>385
>>188

388 :大学への名無しさん:04/05/09 18:03 ID:NTVA+kE7
y=sinXにするってことですか??Xの範囲はどうやってだすのですか??ホンとばかですいません

389 :大学への名無しさん:04/05/09 18:14 ID:WjDW+4D6
 え、θが0〜2/3πだから、xは-π/3〜π/3

390 :大学への名無しさん:04/05/09 18:18 ID:GldPvH7n
不等式 ax+a−1>0 の解が x<−2 であるとき、定数aの値を求めよ。
解答見ても式ばっかりでさっぱりわかりません。
よろしくお願いします。


391 :大学への名無しさん:04/05/09 18:19 ID:NTVA+kE7
2/3πっては120度のことじゃないんですか・・・?自分は範囲は0〜120と
考えてしまいます
根本的に考え方が間違ってるかもです。。
見捨てないでください・・・

392 :大学への名無しさん:04/05/09 18:32 ID:WjDW+4D6
>>391
 θの範囲は0〜120だよ?でもxの範囲はー60〜60だよ?
 θ−π/3=xなんだから。

>>390
 a(x+1)−1>0なので、a(x+1)>1 ほんとは両辺aで割っちゃいたいんだけど、
 aがぷらすかまいなすかで不等号の向きが変わっちゃう。
 もしaがプラスなら、 x+1>1/a になるけど、これだとx<−2の形に不等号の向きが合わない。
 だからaはマイナス。マイナスで割れば
 x+1<1/a すなわち x<1/a−1 んでこれがx<−2なんだからa=−1

393 :大学への名無しさん:04/05/09 18:40 ID:TQegwTpG
>>387
確定値の計算と極限の計算は違うべ。 
あんなお子ちゃま騙し何度も持ち出すなよ。(ry

394 :大学への名無しさん:04/05/09 18:45 ID:NTVA+kE7
あ・・・わかりました!!ありがとございました!!!
ようするにシーターの範囲の最大値とXの最だいちをくみあわせるかんじですよね??


395 :390:04/05/09 18:45 ID:GldPvH7n
>>392
ありがとうございます。

解答には 方程式 ax+a−1=0 の解が x=−2 である。 と
書いてあるんですがなぜでしょうか?
連続ですいません。

396 :大学への名無しさん:04/05/09 19:01 ID:VejAvrR9
>>395
x=-2のとき ax+a-1=0
x>-2のとき ax+a-1<0
x<-2のとき ax+a-1>0

となって-2がキーになってるわけよ。
もう世界が-2を中心に回ってるって感じ

397 :大学への名無しさん:04/05/09 19:07 ID:CZ5bUgeB
>>382
いやこんなのも自分でどうにかできないお前がまじ糞。
お前が糞と思ってる教師よりお前のほうが糞であることを自覚しなさい。
これぐらい教科書読め。

398 :大学への名無しさん:04/05/09 19:38 ID:CZ5bUgeB
>>394
つーかさ分からないんだったらグラフ書いて見なさい。
それが一番分かりやすいと思うよ。
簡単な関数の問題は分からなかったらグラフ書いて視覚化したほうがいい。
数学では数式をそのまんま数式としてみちゃうんじゃなくてその数式の表す意味を考えるのが重要。
この場合θ-π/3がグラフ上でどういう意味を表すのか考えてみるのよ。
それで実際θにいろいろ代入してみてグラフを書いてみたらsinθのグラフをπ/3ずらしただけって分かるだろ。
まぁそんな感じだ。とりあえずグラフ書け。


399 :大学への名無しさん:04/05/09 19:53 ID:Us7cV9Tj
なぜ(A+1)(A-2)>0  が
A<-1 A>2になるのかわかりません
A>-1 A<2ではだめなのでしょうか?

400 :大学への名無しさん:04/05/09 19:55 ID:GVBzBGJu
>>399
ワロタ

だめかどうかは実際に代入してみな。

401 :大学への名無しさん:04/05/09 19:58 ID:Qx8YRHyY
>>399
グラフかけば一目瞭然。

402 :大学への名無しさん:04/05/09 20:11 ID:Ze7ezdK3
旧青チャートUBの例題228番で質問なんですが、
(A)の問題で、解答の四行目に

lal=1であるから OH=(cosθ)a=ka

とあるのですが、OHがcosθとどう絡んでくるのかよく掴めないです。
だれか詳しい人おしえてくれるとうれしいです。

403 :大学への名無しさん:04/05/09 20:44 ID:oYH1JGxt
>>402
確かにわかりにくい。
わざと一般的な a, b(必ずしも長さが1ではないベクトル)で考えると
→  →    → →
OH = |b|(cosθ) a/|a|
になるんじゃないかな?
|b|(cosθ)はOHの長さで、a/|a|は a方向の単位ベクトル。

404 :390:04/05/09 20:56 ID:GldPvH7n
>>396
何となくですがわかりました。ありがとうございました。

405 :大学への名無しさん:04/05/09 21:04 ID:Ze7ezdK3
>>403
なるほど。サンクス。
あと、単位ベクトルの使い方が初めてわかりました。

406 :大学への名無しさん:04/05/09 21:29 ID:kmF4phS5
>>405
正射影ベクトルで検索してみるといいよ。
単位ベクトルじゃなくてもいいんだなこれが。
ほんと役に立つから覚えるといいよ。これは。

407 :大学への名無しさん:04/05/09 21:43 ID:kmF4phS5
書いてからおもったんだけど正射影ベクトルって結局は単位ベクトル使ってるね・・・
さっきのは聞かなかったことにしてくれw

408 :大学への名無しさん:04/05/09 22:41 ID:DTP8oDg1
△ABCの重心をG、外心をOとする。
(1)OA↑+OB↑+OC↑=OH↑となる点Hをとると、点Hは△ABCの垂心であることを証明せよ。
(2)O,G,Hは一直線上にあり、OG:GH=1:2であることを証明せよ。
どう証明したらいいのか皆目検討つきません。おねがいします。

409 :大学への名無しさん:04/05/09 22:44 ID:XW9EMfnu
1時間考えましたがわかりません。ご教授ください

複素数:i   共役な複素数:()

z+i(w) = 3+5i 、 1 / [(z)+iw] = [1-i] / 2 を満たす複素数z.wを求めよ

410 :大学への名無しさん:04/05/09 23:06 ID:INMxBaGz
>>393
その通りだ。しかし
  S=  0.9+0.09+0.009+…
10S=9+0.9+0.09+0.009+…
下から上引いて
9S=9
だから
S=1
ってのは堂々と数I(旧課程なら数A)の教科書に載っている。
これは「お子ちゃま騙し」ではないのか?



411 :大学への名無しさん:04/05/09 23:14 ID:WjDW+4D6
>>409
きごうがよくわからん。

412 :大学への名無しさん:04/05/09 23:20 ID:SnW0XTR3
>>410
それって0.999999999999........=1ってやつだよね。
x=0.9999....とすると
10x-x=9よりx=1ってやつ(微妙に記憶が曖昧だけど)
お子ちゃま騙しじゃないよそれ。
調べてみるといい。

>>188との決定的な違いは
188はSの右の方にいくにつれて数が大きくなっていくが
410はだんだん0に近づいていくって事かな。
あまり詳しくないから知らないけど。

413 :大学への名無しさん:04/05/09 23:21 ID:od9/O3HK
http://members.at.infoseek.co.jp/mathmathmath/
このフォーマットで書くと回答者が読みやすい。

z=a+bi, w=c+diとおく
z+i*w~
=(a+bi) + i(c-di)
=(a+bi) + (ci+d)
=(a+d) + (b+c)i
=3+5i
∴a+d=3, b+c=5

1-i≠
z~+iw
=(a-bi) + i(c+di)
=(a-bi) + (ci-d)
=(a-d) - (b-c)i
=2/(1-i)
=2(1+i)/2
=1+i
∴a-d=1, b-c=-1
(a,b,c,d)=(2,2,3,1)

∴z=2+2i, w=3+i

414 :大学への名無しさん:04/05/09 23:23 ID:od9/O3HK
1-i≠ → 1-i≠0より

415 :大学への名無しさん:04/05/10 00:23 ID:orqkL5qc
速度の定義について質問ですが、数直線上を動く点Pの座標xが時刻tの関数(x=f(t))
であるとき、dx/dt=lim[Δt→0]Δx/Δtを速度とすると定義されてますが、
なぜ普通のΔx/Δtではなくてlimがつくのか分かりません。定義にこういうこと思う
のもなんですが、なんだかイメージが沸かないのです。

416 :大学への名無しさん:04/05/10 00:32 ID:7rQ10OM6
>>415
数学っていうより物理の話なのかもしれないけど…

Δx/Δtってのは平均の速さを示してる.
lim[Δt→0]Δx/Δtってのはその瞬間の速さを示してる

417 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/10 00:35 ID:HUK3vgPJ
>>415
よく言うのは平均のはやさとの違いだよね。
まぁ俺はうまく説明できないから他の詳しい人のレス待つべし。

418 :大学への名無しさん:04/05/10 00:43 ID:Je/jCBix
>>415
では、あなたは「自動車のスピードメーターはいつからいつまでの時間を取って
その差をΔとしているのか?」と問うことに異論がないだろうか?おそらく否だろう。

419 :大学への名無しさん:04/05/10 00:46 ID:orqkL5qc
>>416
サンクスコ
瞬間の速さですね。なんとなくそういう感じは分かるのですが。平均の速さ
と瞬間の速さについて知ってられる方がいたらお願いします。

420 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/10 00:50 ID:HUK3vgPJ
>>419
読んで字の如くって感じだけど。
速さが一定なら速さ*時間で距離が出せるけど
速さが一定じゃなかったら積分しなきゃ距離出せないよね。特別な場合以外は。

まぁなんだ、何が聞きたいのかよく分からんから適当なこと言ってみた(ワラ

421 :大学への名無しさん:04/05/10 02:09 ID:Q/mItbn1
低レベルで恐縮なのですが・・・
<問> P(x)を(x-2)^2で割るとx-2余り、x+2で割ると12余る。
P(x)を(x-2)^2(x+2)で割った時のあまりを求めよ。

解説では、余りR(x)=a(x-2)^2+x-2と置いているのですが、
根拠がよく分からなくて・・・
お願いしますm(__)m

422 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/10 02:24 ID:UpkNMIy5
>>421
A÷B=C余りD の時ってA=B*C+Dでしょ?
中学生レベルの話だからここからは自分で考えた方がいいよ。
問題文の条件から同じように式を立ててみるべし。

423 :大学への名無しさん:04/05/10 02:47 ID:R+P2Vfvi
A(x), Q(x) を商、Rを余りとすると、
P(x) = A(x)*(x-2)^2 + x - 2、P(x) = Q(x)*(x+2)(x-2)^2 + R より、
A(x)*(x-2)^2 + x - 2 = P(x) = Q(x)*(x+2)(x-2)^2 + R ⇔
R = (x-2)^2*{A(x) - Q(x)*(x+2)} + x - 2、 Rは3次式で割った余りなので
その次数は2次以下になる。よって、{A(x) - Q(x)*(x+2)} = a (定数) とおけるから、
R = a(x-2)^2 + x - 2

424 :大学への名無しさん:04/05/10 02:55 ID:Q/mItbn1
>>422
>>423
ありがとうございました。
423の最後三行で疑問が氷解しました。

425 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/10 02:58 ID:UpkNMIy5
>>424
なるほど、ここが分からなかったのか。
ごめんよ、根本的なとこを理解してないのかとおもた。
たしかにわかりにくいとこではありますな。

426 :大学への名無しさん:04/05/10 03:01 ID:Q/mItbn1
>>425
こちらも説明不足でした^^
ありがとうございました。

427 :大学への名無しさん:04/05/10 03:37 ID:sWNBhO4p
ma^2=mb^2+Mc^2
ma=mb+Mc
が成り立つ時、mとMを消去しa,b,cのみからなる関係式を導け。よろしくお願いします

428 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/10 03:56 ID:UpkNMIy5
>>427
文字に条件は無いの?

429 :○○社:04/05/10 04:00 ID:m2iApKHI
物理の問題だろうな。

430 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/10 04:15 ID:l5C5+2dk
M/m=tとでも置いてtを消去すれば解けるだろうけど・・・・

431 :大学への名無しさん:04/05/10 04:23 ID:7rQ10OM6
>>427
a+b-c=0
となったが?

432 :大学への名無しさん:04/05/10 04:36 ID:sWNBhO4p
>>431
どうやってやったかヒント教えてください

433 :大学への名無しさん:04/05/10 04:38 ID:YgkLgcB2
(a-b)(a+b-c)=0

434 :大学への名無しさん:04/05/10 04:44 ID:R+P2Vfvi
c(a-b)(a+b-c) = 0

435 :大学への名無しさん:04/05/10 04:44 ID:sWNBhO4p
>>433
すぐその式出てきたんですか?

436 :○○社:04/05/10 04:48 ID:m2iApKHI
430にヒントが出てると思うが。

437 :大学への名無しさん:04/05/10 11:46 ID:kHqpS1yg
とりあえず第二式からc≠0としてMをm.a.b.cで表して
上に代入しちゃ駄目?

438 :大学への名無しさん:04/05/10 11:52 ID:qsLvJcs8
ma^2=mb^2+Mc^2 → m(a^2-b^2)=Mc^2
ma=mb+Mc → m(a-b)=Mc
 これでも解けない・・・?
 a^2-b^2=x a-b=yとして
 mx=Mc^2
 my=Mc
 こ、これでも・・・?
>>437
 めんどくせ

439 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/10 12:48 ID:4HlIKN7f
2式の両辺をmで割ると
a^2=b^2+(M/m)c^2
a=b+(M/m)c ∴M/m=(a-b)/c
上の式に代入して
a^2=b^2+(a-b)c⇔(a-b)(a+b-c)=0 かな?


440 :437:04/05/10 12:57 ID:kHqpS1yg
〉〉438
それが一番簡明ですね。
見た瞬間にひらめいて出来るのですか?
それとも何らかの思考のプロセスが有りましたか?
この問題で大袈裟な質問かも知れませんが、どのように考えて解くのか知りたいのです。

441 :大学への名無しさん:04/05/10 13:04 ID:qsLvJcs8
>>440
 解けるかなーと思ったら解けた。
 消去したいmが散らばってるんだから、まとめたくなるのは普通じゃないかな。

442 :大学への名無しさん:04/05/10 15:43 ID:T5bKaPwy
>>427
(m,M)=(0,0) のとき a,b,c は任意
(m,M)≠(0,0) のとき (m,M)=(0,0) 以外の (m,M) が存在する為の必要十分条件は
 ma^2=mb^2+Mc^2、ma=mb+Mc ⇔ (b^2-a^2)m+c^2M=0、(b-c)m+cM=0 より
 c(b^2-a^2)-(b-a)c^2=0 つまり c(b-a)(b+a-c)=0

443 :大学への名無しさん:04/05/10 15:49 ID:YgkLgcB2
>>442
そういう問題じゃないし結果も間違ってるよ

444 :大学への名無しさん:04/05/10 15:59 ID:T5bKaPwy
>>443
    ,,,..-‐‐‐-..,,,
   /::::::::::::::::::::::::ヽ        _,..-‐‐-..,,,
  l::;;-‐‐-:;;::::::::::::ヽ//-‐,,__ /:::::::::::::::::::::ヽ
  l:l    ヽ:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::ヽ
  ヽ   /   :::::::::::::::::::::::::::::::::::::;-'^~~^'‐;;:l
   ~ヽ/      :::::::::::::::::::::::::::::::ヽミ   .ll
    / /て^ヽ   ::::::::::::::::;;;;;;;:::::ヽ  ,.ノ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧
    /  |o ゝ○ノ|     ::/^'ヽヽ::::::l'^~ <
  ‐/-,, ヽ( )_,,ノ      |ゝ○_ノ o.|:::::l <
   l  ~^''     `‐'   ヽ..,,_( )ノ  :l  <   |  ヽ            / ̄ ̄\
  '''l^^~~~   ( / ̄ ̄ヽ    -‐‐‐--l-<    |  ヽ   __         |
   ヽ、 ,,,, |  |||!|||i|||!| |   ~^'‐..,,_/ <   /    \   |ノ         /
    / (:::::}| :| |ll ll !! !.| |   ,,,, イ~'' <  /     \ 丿 アアァァ   |
    l:  ~~ | :|!! || ll|| !!:| | {:::::) ::l   <                     ●
   l:     | | !     | l  ~~  l   <
   l、      `ー--― 'ノ     l>    V V V V V V V V V V V V V V V V V
   /^‐-,,____,,,,,,,,..................,,,,,,,__,,,.--ヽ
   ~‐‐'~             ^'‐‐~



445 :大学への名無しさん:04/05/10 16:12 ID:YgkLgcB2
まず結果のほう
c(b-a)(b+a-c)=0
これはc=0かつ(b-a)(b+a-c)≠0の場合を含む
つまりc=0かつb^2-a^2≠0(当然b-a≠0)の場合。
ここまで言えばわかるね。

あと問題文に「mとMを消去しa,b,cのみからなる関係式を導け」
とあるので暗黙の了解としてm*x=0という式においては
両辺をmで割っていいと考えるべきでしょう。
まあこっちは解釈の問題なので絶対というわけではないけど。

446 :大学への名無しさん:04/05/10 16:20 ID:T5bKaPwy
>>445
高校何年生でちゅか?


447 :大学への名無しさん:04/05/10 16:31 ID:YgkLgcB2
まあわからなければいいけど。

> (m,M)≠(0,0) のとき (m,M)=(0,0) 以外の (m,M) が存在する為の必要十分条件は
> c(b-a)(b+a-c)=0

つまり
c(b-a)(b+a-c)=0 ⇔ c=0 or b-a=0 or b+a-c=0のときに (m,M)≠(0,0)なる(m,M)が存在
と主張しているわけだから
c=0かつb-a≠0 or b+a-c≠0のときにも当然(m,M)≠(0,0)なる(m,M)が存在する
このとき
ma^2=mb^2+Mc^2
ma=mb+Mc

m(a^2-b^2)=0
m(a-b)=0

a^2-b^2≠0(a-b≠0)でそれぞれの両辺を割って
m=0 矛盾

Mc=m(a-b)を素直にc(Mc)=m(a^2-b^2)に代入すれば
m(a-b)(a+b-c)=0を得る。このmの扱いは解釈によるとしても
なんでここに余計なcを乗算したのか謎

448 :大学への名無しさん:04/05/10 16:33 ID:kzopMxYs
AA貼ってまで自分の馬鹿さ加減を晒したい人がいますねw

449 :大学への名無しさん:04/05/10 16:36 ID:T5bKaPwy
>>447
>m=0 矛盾
何に?

もうチョットだ!
頑張れ!


450 :大学への名無しさん:04/05/10 16:47 ID:kzopMxYs
うわぁ 痛すぎる・・・
俺みたいにはなるなよっていう受験生に向けたメッセージか?w
てゆうか自信満々の解答のミスを指摘されて恥ずかしくなって
咄嗟に煽りキャラにしたものの、引っ込みがつかなくなってるんだろうなw

451 :大学への名無しさん:04/05/10 16:48 ID:YgkLgcB2
質問者に迷惑になるんで終了するべし

452 :大学への名無しさん:04/05/10 16:54 ID:T5bKaPwy
もう少し真摯に数学と向き合いなさい。
それじゃ質問者に嘘を示すことになるよ。

453 :大学への名無しさん:04/05/10 17:31 ID:T5bKaPwy
拙速に突っ込みを入れたはいいが引っ込みが付かなく、
質問>>449にも答えられずに終わりにしたいようなので>>451
此の辺で>>427の結果(#)を提示して終わりにしておきます。

# (m,M)=(0,0) のとき a,b,c は任意
# (m,M)≠(0,0) のとき 
#  m=0、M≠0 では a,b は任意、c=0
#  m≠0、M=0 では a=b、c は任意
#  mM≠0 では a+b-c=0

坊や達(お嬢さん達かな?)、もう少し数学を勉強しような♪
身勝手な解釈はダメよ。(ry

454 :大学への名無しさん:04/05/10 18:20 ID:HFWblhlX
自分でつまんないと思わないのだろうか

455 :大学への名無しさん:04/05/10 21:59 ID:HIYQQnne
 余は数学の専門家ではない。

456 :大学への名無しさん:04/05/10 22:15 ID:4eEPls3V
>>453
mM≠0でc=0ならma^2=mb^2かつma=mbだからa=bになるのでは

457 :大学への名無しさん:04/05/10 22:28 ID:Iaex66ZL
>>413

ありがとう

458 :大学への名無しさん:04/05/10 23:06 ID:pJi4yFhv
>>456
そうだな。記述漏れだ。

>>453 【訂正】
# (m,M)=(0,0) のとき a,b,c は任意
# (m,M)≠(0,0) のとき 
#  m=0、M≠0 では a,b は任意、c=0
#  m≠0、M=0 では a=b、c は任意
#  mM≠0 では a+b-c=0 or a=b,c=0

スマソ m(_ _)m

459 :大学への名無しさん:04/05/10 23:06 ID:7ZNx9knw
今夜のNHK総合23:00〜23:45
「英語でしゃべらナイト」

今夜は「日本がカッコいい!?」
映画が、アニメが、サムライが・・・
日本の文化はなぜこんなに世界に受けるのか?
ハリウッド映画でのサムライブーム、国際的に人気の日本アニメ。
今、世界では日本のイメージが「カッコいい」に変わりつつあると言われています。

http://www.nhk.or.jp/night/nextpgm.htm

460 :大学への名無しさん:04/05/10 23:07 ID:HIYQQnne
 ぱっくん&しゃくゆみ

461 :大学への名無しさん:04/05/11 14:42 ID:Azyhd9zd
すいませんレベル低いぽいんですがお願いします
旧課程黄チャP.154 practice224(1)の
解答の解説(別冊解答P.P.46-47)なんですけど、
一番最初のところで

 sin(x)+sin(y)-sin(x+y)
=2sin{(x+y)/2}cos{(x-y)/2}-2sin{(x+y)/2}cos{(x+y)/2}

となってますよね?
左辺、右辺のそれぞれ−の左側が sin(x)+sin(y) と 2sin{(x+y)/2}cos{(x-y)/2} で、
これは和→積の公式による変形だと思うので、

sin(x+y)=2sin{(x+y)/2}cos{(x+y)/2} が成り立つはずなんですけど、
これってどういう計算でこうなるんですか?

462 :大学への名無しさん:04/05/11 14:56 ID:cL5xkoG9
sin(x+y)=sin{(x+y)/2+(x+y)/2}
=sin{(x+y)/2}cos{(x+y)/2}+cos{(x+y)/2}sin{(x+y)/2}
=2sin{(x+y)/2}cos{(x+y)/2}

463 :大学への名無しさん:04/05/11 15:06 ID:aMOMKehX
>>461
倍角(半角)の定理

464 :大学への名無しさん:04/05/11 15:13 ID:Azyhd9zd
>>462-463
やっと理解できました!ありがとうございます
こんな使い方もあったんですか
これもパターンなんですか・・・?

465 :大学への名無しさん:04/05/11 15:16 ID:BT6znDSU
>>464
 「(x+y)/2とか(x-y)/2って形にしたいなぁ!」
 って思えるかどうかの問題。こんなのパターンにしてたらキリが無い。
 十分その場で思いつける範囲と思う。

 まぁsinx+siny−sin(x+y)ってのは稀に見る形ではあるけど。

466 :大学への名無しさん:04/05/11 16:31 ID:Azyhd9zd
ありがとです
とりあえず演習もっとこなしてきます・・・
皆さんどうもでした

467 :大学への名無しさん:04/05/11 17:14 ID:YrjC0G/7
VCを勉強したいのですがお勧めのわかりやすいのありませんか?

当方カンカンドウリツ工学部志望

468 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/11 18:11 ID:taiYTj5K
>>467
スレ違いだけど一応。
俺は教科書(授業聞いてなかったけどね・・・)→一対一例題(自学)→学校指定のマイナー問題集(学校の授業,難しめ)
っていう風に勉強したよ。
一対一と教科書を繰り返せば基本的な問題は落とさなくなると思う。
でもさすがに教科書よりいい物は一杯あると思うから他のものにしたほうがいいかもね。
まぁあくまでも参考程度に。

469 :大学への名無しさん:04/05/11 19:09 ID:rkp8seLp
>>467
基礎固めは黄チャートでしたよ モレ
ただ、分数関数とかあの辺がうざい(長くてだらだらする割に重要ではない)から
最初から端から端まで全部、ってやるよりは、
そこを分かったらどんどん先へ、って感じのほうがいい希ガス

470 :大学への名無しさん:04/05/11 22:41 ID:I3meZhs9
>>467
今はどうか知らんが
計算に三十分くらいかかりかねない問題が出てたぞ。昔は。

471 :大学への名無しさん:04/05/11 23:10 ID:Zy2FaHfU
>>408をお願いします。。

472 :大学への名無しさん:04/05/11 23:18 ID:zjQ7HW0o
>>408
AH=OH-OA=OB+OC
BC=OC-OB
AH・BC=(OB+OC)・(OC-OB)=|OC|^2-|OB|^2=0(∵Oは外心だから|OC|=|OB|)
ゆえにAH⊥BC
同様にしてBH⊥AC、CH⊥ABだから、点Hは△ABCの垂心

OG=(OA+OB+OC)/3=OH/3
ゆえに点O点G点Hはこの順に一直線上にあり、OG:GH=OG:(OH-OG)=1:2

473 :大学への名無しさん:04/05/11 23:38 ID:rNdwCY2/
A(2 ,5) B(9 ,0)とするとき直線x+y=5上にPをとり、AP+PBを最小にするPの座標をもとめれ。って問題なんですけど。

AP+PBが直線のとき最小なのでAを直線対称に折り返すのか
Aをx軸対称に折り返すのかどちらが正しいのですか?

どちらも直線になってAP+PBが最小になるような気がするんですが。

474 :471:04/05/12 00:08 ID:mETidJpb
>>472さん
どうもです

475 :大学への名無しさん:04/05/12 00:13 ID:oDoI+Wwh
>>473
折った後の線分の長さを考えてみ

476 :大学への名無しさん:04/05/12 02:29 ID:L74/jAlU
>>473
こんな図をかいてみたらいい
「A(2 ,5) B(9 ,3)とするときx軸上にPをとり、AP+PBを最小にするPの座標を求めよ」っていう問題で
Aをx軸対称に折り返してA'をとって、A'Bとx軸との交点をPとする。
A'PBが直線だから、このときにA'P+PBが最小になるよね。
そしてAPとAP'の長さが等しいからAP+PBが最小といえる。

さっきの問題も図をかいてみて。x軸対称に折り返したのをA'として
475もいってるようにA'Pの長さを考えたらいいよ
「AP=A'P、A'P+PBが最小の時にAP+PBも最小」だと言えるかな?


477 :476:04/05/12 02:33 ID:L74/jAlU
訂正

> そしてAPとAP'の長さが等しいからAP+PBが最小といえる。
APとA'Pの長さが等しいから、ね

478 :大学への名無しさん:04/05/12 07:28 ID:8wmtCjoV
>>473
2点A、Bが直線x+y=5に関して同じ側にあるのか否かの問題でしょ?
同じ側なら1点の対称点をとって線分を引けばよいし、異なる側なら直接線分を引けばよい。
だから、まずその吟味をすべきですね。

479 :大学への名無しさん:04/05/12 08:03 ID:S9MPiuWZ
三角形ABCとBC上の点Dに対し、
三角形ABCの外接円と点Aを通りBCに点Dで接する円との交点のうち、点Aでない方をEとします。
この時の∠ADEの大きさxを求めてください。∠ABD=70° ∠BAD=30° ∠DAC20°です。
補助線とか引いてみましたが解かりませんでした。よろしくお願いします。


480 :大学への名無しさん:04/05/12 15:37 ID:/UI6Tk6Q
すごく簡単で申し訳ないですけど、
lim[x→0](1-cosθ)/2x^2の極限値ってどうやって求めるんでしょうか。

481 :大学への名無しさん:04/05/12 15:38 ID:/UI6Tk6Q
ああ、θではなくてcosxでした。すいません。

482 :大学への名無しさん:04/05/12 15:42 ID:RSo+zGvz
>>480
半角の公式を使う。

483 :大学への名無しさん:04/05/12 15:47 ID:/UI6Tk6Q
>>482
解けました!
ありがとうございます。

484 :大学への名無しさん:04/05/12 16:43 ID:xYhom+cf
一般にA、Bを定数とする時、x≧0を満たすすべての実数xに対してxの1次不等式
Ax+B>0 - @
が成り立つA、Bの条件をもとめよ

これって、
x=0の場合とx≠0の場合で条件分けすればいいのか?

i) x=0の場合、@よりB>0

ii) x≠0(x>0)の場合
Ax+B>0を変形すると、x>(-B/A) - @´となる。
i)より、B>0
A<0の場合
B>0より、(-B/A)は正の実数となり、この式を満たさない正の実数xが存在するのは明らかである。
よって、A<0の場合、全ての正の実数xにおいては@は成り立たない
A=0の場合、@´の形には変形出来ないので@にA=0を代入すると、B>0で@式は成り立つ
A>0の場合
B>0より、(-B/A)は負の実数となり、正の実数であるxより明らかに小さい(@´が成立)。
すなわち、A>0の場合全ての正の実数xにおいて@が成り立つ。

i)、ii)より
A≧0かつB>0において、@式は成立する

って感じで合ってる?
もっとスマートなやり方がありそうなんだが・・・。

485 :大学への名無しさん:04/05/12 16:50 ID:Do3EQcHY
>>484
>x=0の場合とx≠0の場合で条件分けすればいいのか?

違う

>Ax+B>0を変形すると、x>(-B/A) - @´となる。

これダメ

y=Ax+B としてこれのグラフを書く努力してみぃ
どんな直線のときx≧0を満たすすべての実数xに対して y>0 となる?

486 :大学への名無しさん:04/05/12 17:11 ID:xYhom+cf
>>485
>y=Ax+B としてこれのグラフを書く努力してみぃ
>どんな直線のときx≧0を満たすすべての実数xに対して y>0 となる?
A<0の場合成り立たない
A=0の場合、B>0において成り立つ
A>0の場合、B>0において成り立つ。

すなわち、A≧0かつB>0においてy>0になる。

たしかにこのやり方の方がスマートだね。

でも
>>x=0の場合とx≠0の場合で条件分けすればいいのか?
>違う

>>Ax+B>0を変形すると、x>(-B/A) - @´となる。
>これダメ
そうなの?>>484の証明自体が間違ってるの?
i)x=0における@を満たすためのABの条件
ii)x>0における@を満たすためのABの条件

i)、ii)両方を満たすためのABの条件を求めれば
x≧0における@を満たすためのABの条件が求められるんじゃないの?

487 :大学への名無しさん:04/05/12 17:26 ID:Do3EQcHY
>>486
>そうなの?

そうなのよ
Ax+B>0を変形すると
@) A<0 のとき x<-B/A
A) A=0 のとき B>0 つまり B≦0 なら与不等式は不能、0<B なら与不等式を満たす実数xは任意
B) O<A のとき x>-B/A

それと、x=0の場合とx≠0の場合で条件分けする必然性は希薄だと思うぞ

外出するのでここまで ゴメンね

488 :大学への名無しさん:04/05/12 17:38 ID:xYhom+cf
>>487
ああ、そういう事ね。スマソ

何でこんな基本的な事忘れてたんだろ・・・。
ボケが始まってるのか・・・。

489 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/12 17:58 ID:ZsBb9t6g
>>483
こういう極限の問題は半角の公式はかなり使えるからまず半角の公式ってぐらいに
覚えといてもいいような気がするよ。
あとこれなら分母分子に1+cosθ掛けてもとけると思う。

490 :473:04/05/12 18:37 ID:eo5haKQ0
わかりやすい説明ありがとうございました。
理解できました。

491 :weapon ◆RRlBLdA0dk :04/05/12 20:33 ID:XpOzIMnU
>>479
50°なんだけど・・・

492 :479:04/05/12 22:24 ID:S9MPiuWZ
>>491どうやって解きました?

493 :大学への名無しさん:04/05/12 22:34 ID:DgZgnlUY
0≦x^2<1/2の答えってどうなります?

494 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/12 22:51 ID:BixJt8oC
>>493
y=x^2のグラフ書いて見れ〜

495 :大学への名無しさん:04/05/12 22:56 ID:DgZgnlUY
>>494
サンクス、わかりました

496 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/12 23:01 ID:BixJt8oC
>>495
ぁぃょ。
簡単にグラフがかける問題はグラフかいて視覚化してみると理解しやすいよ。

497 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/12 23:03 ID:BixJt8oC
>>484とかね。


498 :えこ。:04/05/12 23:19 ID:VDkvnAe2
>>479 x=70度になったよ。接弦定理つかって。

499 :大学への名無しさん:04/05/12 23:40 ID:VUZmddU6
青チャ数UB平面ベクトル基本例題228
(C)点A(-2,3)を通り、直線L:5x+4y-20=0に垂直な直線の方程式を求めよ。
のところなんですが、なぜ直線Lの法線ベクトルをだして、さらにそのベクトルに
垂直なベクトルをとるのか分かりません。二度垂直にするから平行になってしまう
ような気がしてなりません。


500 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/12 23:49 ID:rKbgZDpP
>>499
ax+by+c=0に垂直なベクトルの一つは(a,b)ってことを考えると?
499さんの言うとおり二度垂直にすると平行になります。
でもこれ本当に 二度 かな?

501 :大学への名無しさん:04/05/12 23:54 ID:7iEn/bx2
>>499
それと垂直な直線の法線ベクトルだから
元の直線と平行

502 :大学への名無しさん:04/05/13 00:06 ID:jUwvmhku
>>479
x=80°になったよ。接弦定理つかって。

503 :大学への名無しさん:04/05/13 00:16 ID:6f8jQBHg
正射影ベクトルP'の公式なのですが、Pを対象ベクトル、P'をその正射影として
P'=(e,P)e (ただし、eは正射影方向の単位ベクトル)とありました。
この導き方をお願いします。

504 :大学への名無しさん:04/05/13 00:19 ID:v7igIZbu
>>503
図を書いて正射影の長さ考えてごらん

505 :大学への名無しさん:04/05/13 10:14 ID:Pbwkzegz
3X^^*2X^^^=6X^^^^^に何故なるのか教えてください
6X^^^^^^になってもいいと思うのですが。。。

506 :大学への名無しさん:04/05/13 12:10 ID:uj/VKOmQ
(x^2)(x^3)=(x・x)・(x・x・x)=x・x・x・x・x=x^5。


507 :大学への名無しさん:04/05/13 16:32 ID:K35+riq/
>>505
教科書嫁

508 :weapon ◆RRlBLdA0dk :04/05/13 21:47 ID:dJS22c+6
>>492
これ置いときますね。

名前: n厨@テスト前 投稿日: 2004/05/13(木) 19:51

まず準備
AからBCに垂直に下ろし円と交わる点をF、ADを通りD側に伸ばした線が円と交わる点をGとします
ADEの外接円の中心をIとします
以下で確認しておきたいこと
@△ABCの外心OはAG上にある
A△OBG,△OFGは正三角形である
B∠IAD=∠IDA=10

@円周角の定理から∠ACG=Rでより確認できます
A
円周角より∠BCG=30、中心角との関係より∠BOG=60で正三角形
円周角より∠FBC=30、中心角との関係より∠FOC=60で正三角形
また同様に円周角より∠BCF=∠GBC=40よりOD=DC
AC上に△HDCが正三角形になるようにおけば∠ODH=40かつOD=DC=DHで∠HOC=30
また△HOC≡△DFCで∠DFC=30。円周角より∠EAC=30.∠AIE=∠AEI=40。∠AID=160で∠DIE=100より∠ADE=50


509 :大学への名無しさん:04/05/13 22:32 ID:zCpmdLb0
青チャVのP142のNOTE欄ですが、
    n
g(x)=1+肺^k/k
   k=1

n
h(x)=1+1+肺^k/k!
k=1

g(x)=0,h(x)=0は
nが偶数のときは実数解をもたない
nが奇数のときは
g(x)=0は-2<x≦-1に、h(x)=0はx≦-1にだけただ一つの解をもつ

これはどのように証明されるのでしょうか?


510 :大学への名無しさん:04/05/13 22:33 ID:g+XmctmY
数学板で荒されたのでこちらに来ました。よろしく。

分数型の2項間漸化式数列 a_(n+1) = (p a_n + q)/(a_n +r) のタイプで
特性方程式が 重解 x = α を持つとき、何故常に 1/(a_n - α) は等差数列になるのですか?


511 :大学への名無しさん:04/05/13 23:41 ID:gyc4jFLt
>>509
g(x)の方はg'(x)=1+x+x^2+・・・+x^(n-1)となり、
g'(x)=0の実数解は x^n=1 の1以外の実数解になります
よって、
nが偶数のときg'(x)=0の実数解はx=-1、このとき増減表を考えるとx=-1で最小ですが
g(-1)>0なので、すべての実数xでg(x)>0、よってg(x)=0の実数解はなし
nが奇数のときg'(x)=0は実数解はなし、すべての実数xでg'(x)>0となるので、
g(x)=0は唯1つの実数解を持ちます、あとはg(-2)とg(-1)の値を調べるだけ

h(x)は1+が1つ多い気がするのですが?
もしそうなら、上と同じようにすればいいでしょう
h(x)のことをnも考慮してh_n(x)と書けば、h_n'(x)=h_(n-1)(x)ですから
nについての帰納法が使えます


512 :大学への名無しさん:04/05/14 00:38 ID:yQKv8sFA
>>510
特性方程式:x^2 -(p-r)x -q = 0 が重解αを持つ時、
2α = p-r → p-α=p-r
α^2 = -q
a_n がαでないとき、
1/(a_(n+1) -α) - 1/(a_n -α) が
どんなnでも定数になることを示せばよい。
上の式はa_(n+1)= (p a_n + q)/(a_n +r) を代入し計算して、
解と係数の関係から出た2つの関係式を使って2つの文字を消す。
計算の結果、上の式は
2/(p+r)
となり、つまり数列{1/(a_n -α)}は等差数列であることがわかる。

513 :512:04/05/14 00:43 ID:yQKv8sFA
訂正
2α = p-r → p-α=r+α
でした。そもそも人によって消す文字は違うだろうし
この変形は不要でした。

514 :大学への名無しさん:04/05/14 01:03 ID:Ku36tjQG
cos29°の近似値を求める問題で、度数を弧度に直して、
cos29°=cos(30°-1°)=cos(π/6-π/180)
cos(π/6-π/180)≒cosπ/6-sinπ/6(-π/180)となっているのは
π/6-π/180≒π/6ということですよね?
これは1°≒0°としていることで何か違和感があるのですが・・・。
(1と0の間は結構幅広いような気がして)


515 :大学への名無しさん:04/05/14 01:19 ID:Ku36tjQG
近似値をとる場合、どこまでを近似ととるのか判断がつきかねます。
0.9などは0に近似していいのか、1はいいのか、など。何かコツみたい
のありますか?

516 :大学への名無しさん:04/05/14 03:52 ID:/m6COSR4
>>514
hが十分小さいときf(x)の1次近似式
f(a+h)≒f(a)+h f'(a)
で、a=π/6 h=π/180 を代入してるわけですな
単位がつく数値では違和感がありそうですね
1kmと1.1kmでは差がありすぎると思いますが、
1mmと1.1mmではなさそうですね

この場合だと
π/180÷π/6=1/30
と1/30なので、これくらいなら十分小さいと思っていいでしょう

517 :大学への名無しさん:04/05/14 08:06 ID:4ZIGe/lC
>>516
IDがCOS

518 :大学への名無しさん:04/05/14 08:21 ID:79MiETpP
待ってて

519 :大学への名無しさん:04/05/14 16:28 ID:EFF9uXkA
ものすごく初歩的なこと聞いてすみません。2の
2/3乗ってどうやったら2√2になるんですか?
ほんとに教えてください

520 :大学への名無しさん:04/05/14 16:30 ID:FK3V1tLn
>>519
2の(2/3)乗は2√2にはなりませんよ

521 :大学への名無しさん:04/05/14 16:31 ID:MGgbKSy0
 3
── = 3/2
 2


 2
── = 2/3
 3

522 :大学への名無しさん:04/05/14 16:32 ID:EFF9uXkA
やっぱり!てことはこの参考書がまちがってるんですね!?
ちなみに答えは8√2でしょうか??

523 :大学への名無しさん:04/05/14 16:32 ID:FK3V1tLn
>>522
違います。

524 :大学への名無しさん:04/05/14 16:34 ID:EFF9uXkA
まちがえた!2の3/2乗でした!
でもなんで2√2になるのかわかりません。。

525 :大学への名無しさん:04/05/14 16:38 ID:FK3V1tLn
>>524
aの(1/2)乗をさらに2乗したらaの1乗つまりaになるってわかるかな?
それがわかればさ、aの(1/2)乗が√aになりそうだってわかると思うんだけど。
んで、(3/2)乗ってのを(1/2)乗のさらに3乗って解釈すれば
aの(3/2)乗は√aの3乗、すなわちa√aになるって寸法です。

526 :大学への名無しさん:04/05/14 16:38 ID:FK3V1tLn
あ、上のはaが正の数のときに限る話ね。

527 :大学への名無しさん:04/05/14 16:39 ID:MGgbKSy0
>>524
逆に考えてみましょう

2√2は2の何乗になる?

528 :大学への名無しさん:04/05/14 16:39 ID:EFF9uXkA
あーーーわかりました!!そういうことですね!
すっきり♪ありがとうございましたー

529 :大学への名無しさん:04/05/14 16:54 ID:vMYx1vHD
→ → → →
2PA+3PB+PC=0
見難いですケド…Pがこれを満たす時、△PAB △PBC △PCA の面積比は、どのように求めるんですか??

530 :大学への名無しさん:04/05/14 16:55 ID:vMYx1vHD
ずれた(鬱)
ベクトルってことが言いたかった…。

531 :大学への名無しさん:04/05/14 17:13 ID:vYO9HFbl
>>529
2PA↑+3PB↑+PC↑=0↑ ⇔ PC↑=-5*{(2PA↑+3PB↑)/5}
ここで (2PA↑+3PB↑)/5 の終点は辺AB上にある(辺ABを 3:2 に内分する)点を表すので
△ABCの面積をSとすると △PAB=(1/6)S (∵ 底辺AB共通、高さの比から )
等と考えよ。(図を描いて、比を調べること)

532 :大学への名無しさん:04/05/14 17:24 ID:1JgrifSk
>>529
 答えだけザックリ言うと、2PA+3PB+PC=0
 の係数比、つまり 2:3:1 になる。これを一般の文字を使って証明しよう。

【問題】PA+αPB+βPC=0 のとき、△PAB △PBC △PCA の面積比が1:α:βになることを示せ。
【証明】全て位置ベクトルにかきあらためると
 (a-p)+α(b-p)+β(c-p)=0 これをpについて解いて
 (1+α+β)p=a+αb+βc両辺割り算して
 p=(a+αb+βc)/(1+α+β) ここからがテクニック。
 p={(a+αb)/(1+α)}*(1+α+β)/(1+α+β)+(1+α)/(1+α+β)βc ここで左端の{}の中身は、
 線分ABをα:1に内分する点であるから、これを新たにDと置くことにする。
 p=(1+α)/(1+α+β)d+(1+α)/(1+α+β)*βc  くくっておいて
  =(1+α)/(1+α+β)(d+βc)  上と同様に、「1:βに内分する点」を作りたいから
  =(1+β)(1+α)/(1+α+β)*(d+βc)/(1+β)  としておく。
 すると右の(d+βc)/(1+β)は、線分CDをβ:1に内分する点であるから、これを新たにEと置くと
 p=(1+β)(1+α)/(1+α+β)e

 以上から図を描けば、ABの内分点D、CDの内分点Eなどを考慮すれば、
 面積比は確かに1:α:βとなる。■

533 :大学への名無しさん:04/05/14 17:59 ID:vMYx1vHD
>>531
ありがとうございます!
>>532
>ここからがテクニック。
からの変形がわかりません…。
△PBC:△PCA:△PAB=1:α:βと覚えてしまえばよいでしょうか?

534 :大学への名無しさん:04/05/14 18:34 ID:vMYx1vHD
>>532
あ、わかりました!!
ありがとうございました!

535 :大学への名無しさん:04/05/14 18:42 ID:vYO9HFbl
>>533
実は、点Pが△ABCの内部にあるとき、
△ABCの面積をS、△PBCの面積をS_1 △PCAの面積をS_2 △PABの面積をS_3とすると、

OP↑=(S_1*OA↑+S_2*OB↑+S_3*OC↑)/S ( S=S_1+S_2+S_3 )

つまり、

S_1*PA↑+S_2*PB↑+S_3*PC↑=0↑

なのですよ。(証明は必要です)
例えば、△ABCの重心を G 、内心を I とすれば

OG↑=(OA↑+OB↑+OC↑) ⇔ GA↑+GB↑+GC↑=0↑

OI↑=(a*OA↑+b*OB↑+c*OC↑)/(a+b+c) ⇔ a*IA↑+b*IB↑+c*IC↑=0↑ ( 但し、辺の長さ BC=a、CA=b、AB=c )

であることが解りますね。
外心、垂心などでも調べてみるとよいでしょう。

536 :大学への名無しさん:04/05/14 18:44 ID:NSJFrUsn
>>533

537 :大学への名無しさん:04/05/14 21:22 ID:axKunNCE
行列のコマサの公式でなぜ回転移動ができるんですか?

538 :大学への名無しさん:04/05/14 21:41 ID:MGgbKSy0
>>537
http://www.google.com/search?q=%E3%82%B3%E3%83%9E%E3%82%B5%E3%81%AE%E5%85%AC%E5%BC%8F&ie=UTF-8&hl=ja&btnG=Google+%E6%A4%9C%E7%B4%A2&lr=

539 :大学への名無しさん:04/05/14 21:49 ID:1JgrifSk
>>538
 ワラタ。俺もやった。

540 :大学への名無しさん:04/05/14 23:12 ID:57oZ+mxu
>>532
随分まんどくさい事してるな

541 :大学への名無しさん:04/05/15 01:04 ID:MXoHiSYK
>>540
ああ、こりゃメネラウスとチェバだね

542 :532:04/05/15 01:09 ID:PnoR4tiE
 汚点をあげるとすればAを0↑と置かなかったことだと思ってた。
>>541
 チェバやメネラウスの証明はもっとやりづらいんだよ・・・。

543 :大学への名無しさん:04/05/15 04:21 ID:Yjnv5/7I
まぁ、メネラウスやチェバの定理の証明からやるならそうだろうな

544 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/15 10:37 ID:scWd4nEn
教科書にある公式だから証明はいらないだろうけどね。

545 :大学への名無しさん:04/05/15 10:39 ID:zmSkVaGy
なに皆でヴォケてんの?
>>540にメネラウスやチェバの定理は無関係だろ (ry

546 :大学への名無しさん:04/05/15 10:44 ID:zmSkVaGy
だいたい>>541はα、βの条件が不明でベクトル表示サボってるし、
>>529の解説にしてはマンドクサ杉 (ry

547 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/15 11:08 ID:scWd4nEn
>>529はPA'↑=2PA↑  3PB'↑=PB↑
とおけば与式を3で割った式より点Pは三角形A'B'Cの重心だから
あとはそれを元に図を書けば中学数学の知識で解けそう。

548 :大学への名無しさん:04/05/15 11:09 ID:ljo7s+AX
>>545
たしかに>>540には無関係だがw (ry

549 :大学への名無しさん:04/05/15 14:06 ID:jEw1G0vt
複素数平面の問題(記述)で答案用紙に偏角について書くときで、
問題文中に特に指示がない場合についての質問です。
結果として解に影響が全くない場合でも、360°の整数倍の差について
一言コメントしておかないと減点対象でしょうか?

550 :大学への名無しさん:04/05/15 14:12 ID:nQFkF/CK
n/2^nでnを∞にするとなぜ0になるんですか?


551 :大学への名無しさん:04/05/15 14:25 ID:ieCaiXq4
>>550
二項定理を用いて
n/2^n=n/(納k=0,n]_C[n,k])
0<C[n,k] (k=0,1,2,・・・,n)、n→∞ とするのだから 1<n と考えてよく
n/2^n=n/(納k=0,n]_C[n,k])<n/C[n,2]=2/(n-1) → 0 (n→∞)


552 :大学への名無しさん:04/05/15 14:26 ID:GndX/L3b
>>549
 細かいことは気にしない。

553 :大学への名無しさん:04/05/15 14:44 ID:nQFkF/CK
>>551
わかりました。
ありがとうございました。

554 :大学への名無しさん:04/05/15 14:56 ID:ieCaiXq4
>>535 の証明部分

点Pが△ABCの内部にあるとき、APが辺BCと交わる点をD、BD:DC=γ:β (0<β、o<γ)とすると
PD↑=(βPB↑+γPC↑)/(β+γ) ⇔ -(β+γ)PD↑+βPB↑+γPC↑=0↑
また PD↑=-{α/(β+γ)}PA↑ (0<α) とおけるから、点Pは
αPA↑+βPB↑+γPC↑=0↑ (0<α、0<β、o<γ) −@
を満たす。
逆に、上の操作を逆に辿れば、@を満たす点Pは△ABCの内部にあることがわかる。
さて、この考察より@を満たす点Pは△ABCの内部にあり、APが辺BCと交わる点をDとすると、
点Dは辺BCを BD:DC=γ:β (0<β、o<γ) に内分する点であり、
点Pは線分ADを AP:PD=(β+γ):α (0<α) に内分する点であることがわかるから、
△ABCの面積をS、△PBCの面積をS_1とすると 
S:S_1=AD:PD=(α+β+γ):α
他も同様にして、△PCAの面積をS_2 △PABの面積をS_3とすると
S:S_2=(α+β+γ):β 、S:S_3=(α+β+γ):γ
を得るから
S_1:S_2:S_3=α:β:γ
である。よって、点Pが△ABCの内部にあって αPA↑+βPB↑+γPC↑=0↑ のとき
(或いは αPA↑+βPB↑+γPC↑=0↑ (0<α、0<β、o<γ) のとき)
S_1:S_2:S_3=α:β:γ
である。

555 :大学への名無しさん:04/05/15 15:20 ID:bDCPCz1f
いま高1なんですが
高2の夏までに黄チャ終わらせればそこそこハイペースですかね?


556 :大学への名無しさん:04/05/15 16:33 ID:ljo7s+AX
そこそこハイペース=普通

557 :大学への名無しさん:04/05/15 16:39 ID:bDCPCz1f
>>556
普通ですかあ・・・
良い国立行きたいんですがやっぱ1年のうちに終わらせるべきなのでしょうか・・・

558 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/15 17:23 ID:acX627dF
>>557
難関大志望だとしてもそこそこ早いとは思う。
ただ「終わらせる」の定義が曖昧だけど・・・


559 :大学への名無しさん:04/05/15 18:41 ID:5i+sEICi
シュワルツの不等式って必須知識でしょうか?
というかコレはいったい全体どんな公式なんでしょうか?

560 :大学への名無しさん:04/05/15 19:05 ID:4XMSaKwN
>>559
「その位ぐぐれ」というレスがイパーイつくに1,000あやや

561 :大学への名無しさん:04/05/15 19:20 ID:8DNDwSMJ
>>559
その位ヤフーとかで検索しろ

562 :大学への名無しさん:04/05/15 19:27 ID:2Ie/Wi6S
数学の新課程は単元事の内容は変わるんですか?

563 :537:04/05/15 21:00 ID:PBcd/sjZ
あれ?あれって俗にコマサの公式って言われてるんじゃなかったのか
学校の先生も代ゼミの人も言ってたのに。
なんか行列でsinとかcosとか-sinとかかけると回転できるっていうやつです。
教えてください

564 :大学への名無しさん:04/05/15 21:07 ID:y1FkZ04p
最大最小を求める方法って
平方完成、相加相乗、微積で極大極小と
あともう1つあった気がするけど何だっけ?

565 :大学への名無しさん:04/05/15 21:31 ID:JiJwmMBr
5/3αn-5/3αn-1
数列ですが、これが
5/2αn-1
となる途中式を教えて下さい。

566 :大学への名無しさん:04/05/15 21:37 ID:lYtJcy0b
おまえら頭よさそーだけど出身高どこよ?

567 :大学への名無しさん:04/05/15 21:56 ID:ESClBwGs
>>566
weapon氏は京大。n厨氏は灘。他はしらん

568 :大学への名無しさん:04/05/15 22:04 ID:mfWl3Ro6
>>563
一次変換、とかでググるといいかと。
コマサってのは聞いたことが無いけど…コサイン、マイナス、サインあたりの語呂合わせ、かな?

569 :大学への名無しさん:04/05/15 22:54 ID:pajJAN+b
ま、普通は回転行列ってゆーんじゃん

570 :大学への名無しさん:04/05/15 23:21 ID:colKaa0b
2cos^(θ/2)=2/{1+tan^2(θ/2)}

こんなのが出てきたんですけど、
これって何でこうなるんですか?

571 :大学への名無しさん:04/05/15 23:23 ID:qZ9tVkjI
>>570
 めんどうだからtan=t cos=cとかく。
 有名な公式:1+t^2=1/c^2
 証明:t=s/cとすれば 左辺=1+s^2/c^2=(c^2+s^2)/c^2=右辺

572 :大学への名無しさん:04/05/15 23:24 ID:8gGw33sj
1の3乗根のωで、ω^2+ω+1=0などは
入試では証明を書いてからじゃないと使ってはいけないんですか?

573 :大学への名無しさん:04/05/15 23:26 ID:qZ9tVkjI
>>572
 ωの問題はだいたいそういう誘導がついてるけどね。
 証明っつっても解答欄に「ω=・・・は、x^3−1=(x-1)(x^2+x+1)=0を満たすので」でいいでしょ。

574 :大学への名無しさん:04/05/15 23:29 ID:/4pm61sl
2次曲線y=2|x^2-4x+3|+2(縦線は絶対値です)と点(0,1)を通る直線が4点で交わる時の直線の傾きmの範囲を求めよ

という問題なんですが、私はグラフからx=1の時、m+1>1、x=2の時、2m+1<4、x=3の時、3m+1>2であればいいと考え、
1<m<3/2と考えたんですが、答えは1<m<8−2√10となっていました。
正確なやり方と、出来れば私の間違えも指摘していただけないでしょうか?お願いします。

575 :大学への名無しさん:04/05/15 23:29 ID:qZ9tVkjI
>>564
 いや別に。いっぱいあるよ。
 こーしー・しゅわるつ、さんかくふとうしき、ちぇびしぇふふとうしき、
 数え切れないくらいある。
>>566
 大学生だよ。
 

576 :565:04/05/15 23:34 ID:Rmu/DrMa
5/3αnー5/3αn-1=5/2αn-1

数列の問題ですが、この計算の途中式を教えて下さい。
565を書き直しました。

577 :大学への名無しさん:04/05/15 23:37 ID:qZ9tVkjI
>>574
 二次曲線とはあんまり言わないな、それに時間数だ。
 二次曲線=楕円(円)・双曲線

y=2|x^2-4x+3|+2と点(0,1)を通る直線が4点で交わる時の直線の傾きmの範囲
y=2|(x-1)(x-3)|+2 直線L≡y=mx+1
Lが(1,2)を通るとき、m=1・・・A
Lがy=-2(x-1)(x-3)+2=−2x^2+8x−4に接するとき
 y’=−4x+8
 y=-4(a-2)(x-a)-2a^2+8a-4=mx+1
  これが恒等式。 -4(a-2)=m 2a^2-4=1 a=√10/2
 m=−2√10+8・・・B

 AとBの間=1〜8−2るーと2

578 :大学への名無しさん:04/05/15 23:39 ID:qZ9tVkjI
>>576
 1.表記が分かりづらい
 「えいえぬ」といいたいときはa_nやa[n] えいのえぬひく1といいたいときはa_(n-1)やa[n-1]を使おう。

 で、僕が解読するに、それ成り立ってない。
 問題文全部書いたほうがいいよ。
                 

579 :大学への名無しさん:04/05/15 23:44 ID:colKaa0b
>>571
スイマセンまだ分からんです・・・
1+tan^2(θ)=1/{1+cos^2(θ)}←この公式は知ってるんですが、
cos^2(θ)=1/{1+tan^2(θ)}←>>570はこうなってません?

580 :576:04/05/15 23:46 ID:Rmu/DrMa
わかりました。ご指摘さんくすです

581 :大学への名無しさん:04/05/15 23:50 ID:qZ9tVkjI
>>579
 >1+tan^2(θ)=1/{1+cos^2(θ)}←この公式は知ってるんですが
 な、何それ・・・。公式覚え違えてる。
 僕絶対たんじぇんと使わないからこんな公式覚えてないんだけど、
 それでも頭ん中ですぐ証明できるからそんなに困らない。
 この証明簡単だから知っとくといいよ、間違って覚えるくらいなら。

>>571もう一度読んでみて。1+t^2=1/c^2 の逆数とっただけだよ。

582 :570:04/05/15 23:59 ID:colKaa0b
>>581
ゴメンナサイ>>579のは書き間違いでした・・・
もう一回読んでみて理解できました
逆数取るというところに発想が至らなかったようです
修行しなおしてきます・・・

583 :大学への名無しさん:04/05/16 00:06 ID:pp29/gjk
>>577
ありがとうございます。接線を求めればよかったんですね。

584 : :04/05/16 09:52 ID:6POniKOL
20個の製品の中に二個の不良品が含まれている。
この中から5個を取り出すとき、その中に不良品が入っていない
確率を求めよ。

お願いします。


585 :大学への名無しさん:04/05/16 10:03 ID:UjMDDROT
>>584
18C5/20C5 = (18・17・16・15・14)/(20・19・18・17・16)

586 :大学への名無しさん:04/05/16 10:06 ID:dxzgmO6b
◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆
☆ボクも☆男の子のぉ化粧☆かゎぃくなりたぃなぁ☆
1 :草摩紅葉 :04/05/16 09:46 ID:vCmdi9WA
〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜
だって、ボクゎ男の子だもん。かゎぃくなりたぃなぁ〜♪♪
とぉるchanみたく、かゎぃくなりたぃなぁ〜。
〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜〜

そんなこと考えてる男の子が集まるスレッドです!!
男の子のぉ化粧応援します!!
今時の男子中高生なら、誰でもぉ化粧しますよね?
この前、見たもん。男の子のかばんのにぉ化粧ポーチは入ってたもん。
男の子なら、誰だってぉ化粧したぃはず。みんな集まれぇ〜☆☆
◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆

○●○●○●○●○●○●○●check!!○●○●○●○●○●○●○●
http://life3.2ch.net/test/read.cgi/female/1084668367/l50
○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●
,,,

587 : :04/05/16 10:16 ID:6POniKOL
>>585
わかりました。どうもありがとうございました。

588 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/16 10:49 ID:772OFqok
>>579
そこらへんの公式は(sinθ)^2+(cosθ)^2=1を式変形しただけだから
自分でいろいろいじってみるといいよ。
例えば両辺を(cosθ)^2で割ると579さんが覚え間違えてた式になる。
最低でも加法定理と(sinθ)^2+(cosθ)^2=1は暗記しといた方がいいです。

589 :大学への名無しさん:04/05/16 14:01 ID:R3UGgWVk
OAの長さを3とした場合、
「OAを1:2に内分した点をMとする」
「OAを2:1に内分した点をMとする」
「AOを1:2に内分した点をMとする」
「AOを2:1に内分した点をMとする」
のそれぞれにおいて長さが2になるのはAMかOMか教えてください

590 :大学への名無しさん:04/05/16 14:04 ID:ilnOuI4+
「OAを1:2に内分した点をMとする」
これはAMが2っすね
あとはわかるだろ

591 :大学への名無しさん:04/05/16 14:32 ID:JwJMi/RF
どんな三角形でも必ず外心と内心をもっているんでしょうか?
三角比をやっていたら、中学の図形的知識を使う問題がまったく解けないことに気がつきました・・・

592 :大学への名無しさん:04/05/16 14:50 ID:9ZdSVSRY
 証明せよ となると厄介な気がしてきた。考えてみよ。

593 :大学への名無しさん:04/05/16 15:10 ID:SUR21B52
前辺既知の四面体の体積を求めるための
定石みたいなのは存在しますか?
(辺が全て出ていれば必ず体積が求まるのですか?)

594 :大学への名無しさん:04/05/16 15:11 ID:9ZdSVSRY
 あ、簡単だった。

【内心】(1)3つの角の二等分線が1点で交わることを証明する。
 (2)任意の(x,y,z)が、ある3定数a,b,cによってx=a+b、y=b+c、z=c+aと表せる。
 どっちでも証明になってるハズ。

【外信】(1)3辺のそれぞれの垂直二等分線が1点で交わることを示す。
(2)円周上の3点をとって三角形を作ることができるが、この3点は全ての角度をとりうることを示す。
 どっちでも証明になってるハズ。

595 :大学への名無しさん:04/05/16 15:14 ID:9ZdSVSRY
>>593
 そのくらい自分で公式作ってみようと思えば作れるでしょ。
 全ての辺の長さが分かってれば体積は一定の値に定まるんだから、
 体積は辺の長さだけの関数になる。

596 :大学への名無しさん:04/05/16 15:20 ID:JwJMi/RF
>>594
ありがとうございました。
円に内接すると書いてないのに正弦定理を使ってたのは当たり前だから書いてなかっただけなんですね。

597 :大学への名無しさん:04/05/16 15:32 ID:4TVH8Ebm
数IIIで、「第2次導関数による極値の判定法」ってのがよく分かりません。
f''(a)>0 のときにf'(a)が増加する(またその逆)、のところまでは分かるのですが、
そうしたら何故「f'(a)=0とすれば、f''(a)>0のときf(a)はx=aで極小」になるのかが教科書を見てもさっぱりです。
ご教授お願いします。

598 :大学への名無しさん:04/05/16 15:56 ID:9ZdSVSRY
>>597
 んー、微分の’が恐ろしく見えづらい。書き直そう。
「f’’(a)>0 のときにf'(a)が増加する」
 f’’がaにおいてプラスなら、f’はその点において増加。
 うん、間違い無さそうだ。
「f’(a)=0とすれば、f’’(a)>0のときf(a)はx=aで極小」
 f’がaにおいて0になるならば、f’’>0のときfはaで極小。
 fが局地をとるならば、f’が増加中なのでfはaで極小。
 f’が増加途中に0という値をとるならば、それに対応するfの極致は極小。
 あぁうん、正しそう。
「f’(a)=0とすれば、f’’(a)>0のとき」ってのは
「f’が増加しながら、つまり−2、−1、−1/2とあがってきて0になってるならば」って意味ね。

599 :大学への名無しさん:04/05/16 16:07 ID:BpIL37vF
>>597
よく読んでないけど、f''>0のときは下に凸だよ。接線の傾きによらずにね。

600 :大学への名無しさん:04/05/16 16:55 ID:FoBn4HHc
>>595
俺には作れません。
普通に計算して求める事もできませんし。。。

601 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/16 17:15 ID:4wrzoN9/
>>600
全ての辺の長さが分かるなら余弦定理で全ての三角形の角の大きさが分かるよね?
必要なのは底面積と高さで底面積は普通に三角形の面積だから
後は高さを求めればいいと思う。


602 :大学への名無しさん:04/05/16 19:16 ID:TjXNIZpT
青チャート基礎からの数学I+A 発展 例題77の質問なんですけど

★問題★
方程式x^2+(a+2)x-a+1の2つの解
のうち少なくとも1つが-2<x<0の範囲にあるような定数a
のとりうる値の範囲を求めよ

★解答★
f(x)=x^2+(a+2)x-a+1とする。
f(-2)=-3a+1 f(0)=-a+1

[1]解の1つが -2<x<0, 他の解がx<-2 または 0<xにある条件は
f(-2)f(0)<0
(-3a+1)(-a+1)<0から1/3<a<1

[2]解の1つがx=-2 または x=0のときは
f(-2)f(0)=0 から (-3a+1)(-a+1)=0 a=1/3,1
a=1/3のとき 他の解はx=-1/3 条件を満たす
a=1のとき  他の解はx=-3 条件をを満たさない。

[3]2つの解がともに-2<x<0にある条件は
D=(a+2)^2-4(1)(-a+1)≧0
f(-2)=-3a+1>0,f(0)=-a+1>0
軸 -2<-a+2/2<0
これを解いてa≦-8,0≦a a<1/3かつa<1 -2<a<2
共通範囲をとって0≦a<1/3
[1][2][3]の範囲をあわせて   0≦a<1 【答】


603 :602:04/05/16 19:21 ID:TjXNIZpT
>>602の解答の
[2]のa=1/3のときx=-1/3 条件を満たす。
    a=1のときx=-3 条件をを満たさない。
とありますがこの[2]は結局解答に含まれていないんですよね・・・?

それと
解答の[3]の
f(-2)=-3a+1>0,f(0)=-a+1>0とありますが、

[1]だとf(-2)f(0)<0
[2]だとf(-2)f(0)=0となっているのに
なぜ[3]ではf(-2)f(0)>0にならないのでしょうか?

604 :大学への名無しさん:04/05/16 19:46 ID:CNkI2k+M
>>603
[2]の「a=1/3のとき」は解答の範囲に含まれている。

y=f(x)のグラフを描いて考えてみればわかる。
[1]のf(-2)f(0)<0は、「f(-2)とf(0)の符号が異なる」ということ
[2]のf(-2)f(0)=0は、「f(-2)=0またはf(0)=0」ということ
[3]がf(-2)f(0)>0だと、「f(-2)>0かつf(0)>0」の場合と「f(-2)<0かつf(0)<0」の場合があるが、後者は-2<x<0には解を持たない。

605 :602:04/05/16 19:55 ID:TjXNIZpT
>>604
なるほど。
だからf(-2)f(0)>0じゃなくてf(-2)>0かつf(0)>0だったんですね。。。
分かりやすい説明ありがとうございました。

606 :大学への名無しさん:04/05/16 19:55 ID:CNkI2k+M
>>597
f’’>0ということは、その付近でf’が増加しているということ。
f’が増加しているということは、その付近でfの傾きがだんだん大きくなっているということ。
fの傾きがだんだん大きくなっているということは、その付近が下に凸であるということ。

607 :大学への名無しさん:04/05/16 19:59 ID:CNkI2k+M
>>593
自分で考えた方がいいと思うが、いい説明が出てきたので(ってゆうか、ググったらすぐ見つかったぞ!)
http://www.shinko-keirin.co.jp/kosu/mathematics/kirinuki/kirinuki18.html


608 :602:04/05/16 20:16 ID:TjXNIZpT
すいません、
またひとつ分からないところが出てきたのですが
>>602の[3]の
D=(a+2)^2-4(1)(-a+1)≧0
この式は必要なのでしょうか?
不必要に思えるのですが。。


609 :大学への名無しさん:04/05/16 20:27 ID:CNkI2k+M
>>608
D<0 なら、f(-2)>0かつf(0)>0どころか、全てのxでf(x)>0となって、実数解が存在しません。

610 :602:04/05/16 20:27 ID:TjXNIZpT
あ、やっぱり・・・
自分なりに考えてみたんですが
問題に「少なくとも1つが」とあるので
D≧0が必要なのは、
-2<x<0の範囲での共有点の数が1つ(D=0)のときでも2つ(D>0)のときでも
成り立つからでしょうか?

611 :602:04/05/16 20:30 ID:TjXNIZpT
>>609
あ・・・そうですね・・・
すいませんでした。。


612 :大学への名無しさん:04/05/16 20:30 ID:zkhccYjd
>>610
yes

613 :大学への名無しさん:04/05/16 20:30 ID:CNkI2k+M
>>610
まぁ、そんなとこでしょ。

614 :602:04/05/16 20:34 ID:TjXNIZpT
ありがとうございました。
青チャートやってるとこうやってたまにつまづくんですが
問題が難しいからか・・・
それとも基礎がしっかりしてないからでしょうか・・・

615 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/16 20:34 ID:rlTeD+V5
>>608
D=(a+2)^2-4(1)(-a+1)≧0
この条件無しでグラフを書いてみるべし。
この条件無しじゃ他の条件は満たすけど題意の条件は満たさないグラフが書けない?

グラフを書けば題意を満たすパターンはいくつあって
このパターンを満たすのにはこの条件が必要だ というのがわかるはず。
自分で考えないとすこし問題が変わるだけで解けなくなるよ。
こういう問題は自分でグラフを書いて試行錯誤すれば一発で覚えられると思うから
答えを見ずに似たような問題をもう一度解いてみるといいです。
こういうグラフで考えられるパターンの問題は暗記するようなものじゃないよ。

616 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/16 20:41 ID:rlTeD+V5
て、打ってる間に解決しちゃってたか。
たまに躓く程度なら全然大丈夫。
でももし解答みながらやってるんなら俺はあまり意味ないと思います。
最低でも5分は自分で考えないと応用力つかないと思うので。
まぁ考えながらやってるんなら絶対に力がつくと思うので
頑張ってください(って俺もそんなこといえる立場じゃないけど)

617 :602:04/05/16 20:52 ID:RZ4b8AM7
>615.616
そうですか。。
どうもです。なんだかこの問題でつまづいてちゃダメな気がしたんですが。。
だいじょうぶかな。

618 :大学への名無しさん:04/05/16 20:52 ID:KyPlFMhR
微分

619 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/16 20:56 ID:rlTeD+V5
>>617
まぁ正直この問題は基礎だと思うけどね(笑
俺もちょこちょこ基本が抜けてるし基礎を完璧に埋められてたら
青チャなんて楽勝になっちゃいますよ。
これから少しずつ埋めていけばいいんじゃないかな。

620 :602:04/05/16 21:02 ID:RZ4b8AM7
そうですか
ちょっとショックだけど基礎ができないから応用ができないわけだしがんがります

621 :大学への名無しさん:04/05/16 21:05 ID:A6KLpjW2
ある三角形について角の二等分線をそれぞれ引くと、なぜ交点が同じになって、
しかもそれが内接円の円心になるのか、その証明の仕方が分かりません。
どなたか教えて下さい

622 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/16 21:57 ID:vpOLlr0L
>>621
三角形ABCで∠Aの二等分線上の点は辺ABからの距離と辺ACからの距離が等しい。
また∠Bの二等分線上の点は辺ABからの距離と辺BCからの距離が等しい。
だから二つの二等分線の交点では全ての辺からの距離が等しい。
もちろんこの理由でもう一本の二等分線との交点も一致。
ここで内心は三辺からの距離が等しい点のことだからその交点とはずばり内心である。
こう考えていけば621のことは当たり前っちゃあ当たり前っぽいけど
証明するならそこら辺のことを数式で表していけばできるような気がする。
(でも数式で表していくのがちょっとめんどくさいかも?空いた時間にやってみよう・・・)
もし考え方さえ間違えていたらゴミンナサイ・・・・

623 :594:04/05/16 22:01 ID:9ZdSVSRY
>>621
 >>594さ、俺実は(1)は厳密にはやってないけど、
 三角形の内角の和=180°だけでいけるハズだよ。

(2)のが簡単そうだったから(2)でやったんだけどね。
(2)の意味は分かる?3辺がx、y、zで、こう・・・図形的に。
 x=a+b y=b+c z=c+a を、逆にa,b,cについて解けば
 a=(x-y+z)/2 b=(x+y-z)/2 c=(-x+y+z)/2 になると思うけど。
 んで、「いかなるx、y、zに対しても、↑のようなa,b,cをとることができる」で証明完了。

624 :大学への名無しさん:04/05/16 22:02 ID:LKHtR0t1
>>621
「チェバの逆定理」を使えばよい。

625 :大学への名無しさん:04/05/16 22:35 ID:XSs6YuQr
次の関数のn回導関数
(1)1/(1+2x)
(2)cos^2x
(3)1/(1-x^2)

よろしくおねがいします。

626 : :04/05/16 22:43 ID:6POniKOL
正五角形ABCDEの頂点をAから出発して、A,B・・・の順に左回りする
pがある。さいころをふり出た目の数だけpを移動するとして
k回目に進んだ点の位置をp(k)とするとき

p(3)=Aとなる確率を求めよ。

よくわからないので、お願いします。

627 :大学への名無しさん:04/05/16 23:01 ID:uF3x4sMw
さいころ3回振って合計が5か10か15の確立

628 : :04/05/16 23:14 ID:6POniKOL
>>627
ご解答ありがとうございます。
それの理屈はわかるのですが、式で表すとどうなるんでしょうか?


629 :続きます:04/05/16 23:47 ID:/2q1HoIF
さいころが3回振った和がnになる確率を求める。

i)n=5の場合
3回の出る目の組み合わせは
(1,1,3) , (1,2,2)の2通り。
(1,1,3)となる場合の数は 3C2 * 1C1 =3通り。
(1,2,2)となる場合の数は 3C1 * 2C2 =3通り。
合わせて6通り。

ii)n=10の場合
3回の出る目の組み合わせは
(1,3,6) , (1,4,5) , (2,2,6) ,
(2,3,5) , (2,4,4) , (3,3,4) の6通り。
(1,3,6) , (1,4,5) , (2,3,5)となる場合の数は
3!=9通り。
(2,2,6) , (2,4,4) , (3,3,4)となる場合の数は
3C1 * 2C2 = 3通り。
合わせて3*9+3*3=36通り。

iii)n=15の場合
3回の出る目の組み合わせは
(3,6,6) , (4,5,6) , (5,5,5)の3通り。
(3.6.6)となる場合の数は 3C1 * 2C2 =3通り。
(4,5,6)となる場合の数は 3!=9通り。
(5,5,5)となる場合の数は 3C3 =1通り。
合わせて13通り。

630 :続きました:04/05/16 23:48 ID:/2q1HoIF
以上i)〜iii)の事象は互いに背反であるから、
全通りの場合の数は6+36+13=55通り。
さいころの目の出方は6^3=216通りであるから、
求める確率は
55/216 //


こんなんでOKですか。

631 :続きました:04/05/16 23:49 ID:/2q1HoIF
すみません1行目

×さいころが3回振った和がnになる確率を求める。
○さいころが3回振った和がnになる場合の数を求める。

脳内訂正お願いします

632 :大学への名無しさん:04/05/16 23:52 ID:Nj6O4psd
こんな質問で悪いんだけどみんな数学ってどんなやり方で勉強してる?俺はとりあえずチャートとかひたすら解いてるけどあんまり効果ない気がする。その場は理解できても範囲広すぎてすぐ忘れるし。

やっぱやり方云々じゃなくて勉強量が物を言うのかね〜?

633 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/16 23:55 ID:we7TZNxB
>>632
正直勉強量が一番ものをいうような気がする。
俺も結構すぐ忘れちゃうし。
記憶(≒暗記?)を意識しながら問題解きまくるのがよさそう。

634 :大学への名無しさん:04/05/16 23:58 ID:uF3x4sMw
>>629-630
3!= 6 ね


635 :629:04/05/17 00:01 ID:k2YO6fYP
ぁゎゎゎゎゎゎ

ii)n=10
あわせて3*6+3*3=27通り

iii)n=15
3+6+1=10通り

6+27+10=43
正解は43/216
OTLOTLOTLOTLOTLOTLOTLOTLOTLOTLOTLOTL

636 :大学への名無しさん:04/05/17 00:35 ID:RXwNISM6
>>601
はい、分かります。
真に恐縮ですが、高さの出し方を教えてもらえないでしょうか。

>>607
Thx!
正四面体ではないのですが参考になります。

637 :大学への名無しさん:04/05/17 00:49 ID:iaGc5fgM
x^2/(x^2+1)^2
これを部分分数に分けろっていう問題なんですけどさっぱりです。
解法教えてください。

638 :大学への名無しさん:04/05/17 01:46 ID:6XxChBmx
A/(x^2+1)^2  +  B/(x^2+1)
の形にすること
通分して係数比較してA、Bは求まる

639 :大学への名無しさん:04/05/17 02:42 ID:yvDtwO3V
>>625
d^n{1/(1+2x)}/dx^n = n!(-2)^n/(1+2x)^(n+1)

(k≧1)
d^(2k-1){cos^2x}/dx^(2k-1) = -(-4)^(k-1) sin2x
d^(2k){cos^2x}/dx^(2k) = -2(-4)^(k-1) cos2x

d^n{1/(1-x^2)}/dx^n
= k!/2 {(1-x)^(-(k+1))+(-1)^k (1 + x)^(-(k+1))}

640 : :04/05/17 07:26 ID:Bkm/oV4v
>>629
返事が遅れてすいません。
どうもありがとうございました。

641 :大学への名無しさん:04/05/17 17:25 ID:M4MSjiJP
>632
基本的な問題の解法をどれだけ身につけるかがまず大事だと思う。
そのためにとにかく似たような問題を解きまくるのは有効だし、
分からない人に解き方を教えるのも自分にとってかなり有益。
ある単元の問題集・参考書を簡単なものでもいいから自分で作れるぐらい流れと
ポイントを覚えたなら、その単元の基本はマスターしたと言っていいでしょう。
なので、問題を自分で作ってみるってのも一つの面白い方法かもしれない。

642 :大学への名無しさん:04/05/17 18:15 ID:y/6F+bUN
>>511
thx

643 :大学への名無しさん:04/05/17 19:15 ID:9xhmV8eR
マジでこんな漠然とした質問聞いちゃいますけど
俺、なんか最近数学を見るのも嫌なんです。
もちろん得意ではないですが、少なくとも社会系の科目よりは好きです。

こんなときどうしたらいいでしょうか。

644 :大学への名無しさん:04/05/17 19:16 ID:0AOhF7R7
 諦めましょう

645 :大学への名無しさん:04/05/17 19:24 ID:UQ6D+xGZ
>>643
一日遊ぶのがいいよ、とかいう人は多いな
確実に解ける問題ばっかりやって得意意識つけるやり方もあるかも
それでも駄目なら
「俺は数学が好きだ、だから頑張って数学をやるのだ」って一日中唱え続けるとか

646 :大学への名無しさん:04/05/17 20:18 ID:gJ1M2o7c
(2x+1)(x-2)(A-1)+6=(2x+1)(x-2)A+t
t=?
(2x+1)(x-2)(A-1)+6=(2x+1)(x-2)A-(2x+1)+6=(2x+1)(x-2)A-2x+5
t=-2x+5
(2x+1)(x-2)(A-1)+6=(2x+1)(x-2)A-(x-2)+6=(2x+1)(x-2)A-x+8
t=-x+8


647 :大学への名無しさん:04/05/17 20:33 ID:6XxChBmx
>>646
(2x+1)(x-2)(A-1)+6 = (2x+1)(x-2)A - (2x+1)(x-2) +6
t= - (2x+1)(x-2) +6

648 :大学への名無しさん:04/05/17 20:39 ID:jtyMRYpJ
数年前の河合の難関国立医学部向けのテキストから
赤、黄、青、緑、黒のうち3色を選んででさいころの六面を塗り分ける。
これらの塗りわけ方は何通りあるか。ただし回転させて同じ場合は区別する。
講議ノートがないのでさっぱりです。

649 :大学への名無しさん:04/05/17 20:49 ID:gJ1M2o7c
問題が違ってました。
(2x+1){(x-2)A-1}+6=(2x+1)(x-2)A+t
(2x+1){(x-2)A-1}+6=(2x+1)(x-2)A-(2x+1)+6=(2x+1)(x-2)A-2x+5
t=-2x+5
でした。

650 :大学への名無しさん:04/05/17 21:18 ID:M4MSjiJP
>>648
答えは290通り(タブン)

考え方
使用する3色をx,y,zとする。
6面あるので、その色を何回使うかの選び方の数は
x+y+z=6 (x,y,zは自然数) の解(x,y,z)の個数と等しく、10通り。
上の10通りに対して、色の配置の場合の数を一気に計算するのは無理。
(x,y,z)={1,1,4}の場合
 (1,1,4),(1,4,1),(4,1,1)とどれを4回使うかという選び方が3通り
 配置の方法は2通り
 よってこの場合は6通り
(x,y,z)={1,2,3}の場合
 配置の方法は3通りなので、この場合は18通り
(x,y,z)={2,2,2}の場合
 配置の方法は5通りなので、この場合は5通り
したがって、あるx,y,zに対して29通りある。
使用する3色の選び方は10通りあるので、答えは290通り。

651 :大学への名無しさん:04/05/17 21:29 ID:jtyMRYpJ
>>650
ありがとうございます。答えがない分本当に申し訳ないですが、あってるかわかりません。(テキストは問題文のみ)
今,回答の道筋をおっています。

652 :大学への名無しさん:04/05/17 22:00 ID:p5blhQs9
1辺の長さが1の正三角形ABCがある。このときの↑ABと↑BCの内積を求めよ。
↑AB・↑BC=1・1・cos60°=1/2ではだめなのでしょうか?解答では-1/2なんですが・・・教えてください。

653 :大学への名無しさん:04/05/17 22:16 ID:W6E57iwn
次の式で定義される数列の極限を求めよ。
@ a(1)>0 , a(n)=2/(2+a(n-1)) , (n>=2)
A a(1)=1 , a(n)=1+1/a(n-1) , (n>=2)

次の極限値を求めよ。
B lim_[x→+0]1/logx

C f(x)=1/(1+e^(1/x)) (x≠0)
   =1 (x=0)
とするとき、f(x)の連続性を調べよ。

D f(x)=xsin(1/x) (x≠0)
=0 (x=0)
はx=0で連続であるが、x=0で微分不可能であることを示せ。

以上の問題がさっぱり解りません、どなたかお願いします。

654 :大学への名無しさん:04/05/17 22:18 ID:wJs50Qe6
↑AB=−↑BA

655 :大学への名無しさん:04/05/17 22:39 ID:dnH454Ou
不等式xy(x2乗+y2乗-1)>0で表される領域をxy平面に図示せよ。
って問題について教えて欲しいのですが、
領域はわかります。答えあるので。
ただ、そこまでどうやって導けばいいのかわかりません。
なんか友人にはx=1,y=1がヒントと言われたのですがさっぱりです。
どなたかよろしくお願いします。

656 :大学への名無しさん:04/05/17 23:19 ID:yFhwUXaw
>>655
xy>0の時(つまりx>0,y>0 or x<0,y<0の時)
x^2+y^2>1
xy<0の時
x^2+y^2<1
x=0 or y=0は領域外
でいい気がするんだけど…
これだとx=1,y=1はジェンジェンかんけいない・・

657 :大学への名無しさん:04/05/17 23:31 ID:2vrr0UP9
x^5+y^5+z^5を、(x^2+y^2+z^2)(x^3+y^2+z^2)を用いて因数分解せよ
って問題が出来ません。誰か分かりますか?

658 :○○社:04/05/17 23:33 ID:9vcJl6wi
(x^2+y^2+z^2)(x^3+y^2+z^2)

(x^2+y^2+z^2)(x^3+y^3+z^3)
の間違えだろ

659 :大学への名無しさん:04/05/17 23:35 ID:yFhwUXaw
>>657
手つける前に一応聞くけど
(x^2+y^2+z^2)(x^3+y^3+z^3)の間違いではないな?

660 :大学への名無しさん:04/05/17 23:36 ID:yFhwUXaw
被った…(鬱

661 :大学への名無しさん:04/05/17 23:43 ID:2vrr0UP9
>>659
間違いでした。でも解けません。僕レベル低いみたいなんで。

662 :○○社:04/05/17 23:44 ID:9vcJl6wi
(x^2+y^2+z^2)(x^3+y^3+z^3) を展開してみ

663 :大学への名無しさん:04/05/17 23:45 ID:2vrr0UP9
>>662
展開してもさっぱり分かりません。

664 :大学への名無しさん:04/05/17 23:45 ID:wihDnE24
単調増加関数の逆関数は単調増加であること示せ。という問いなのですが
どなたかおねがいします。

665 :大学への名無しさん:04/05/18 00:49 ID:0Zn9LMuX
数列{a(n)}を次のように定義する。
a(n)=〔{a(n-1)+a(n-2)+a(n-3)+a(n-4)+a(n-5)+a(n-6)}の1の位の数〕(n≧7)
a(1)=1 a(2)=0 a(3)=1 a(4)=0 a(5)=1 a(6)=0
この時{a(n)}の部分列で、0,1,0,1,0,1 となるような部分列は存在しないことを
示せ。
この問題さっぱり分からないのですが。まず何をすればいいのかが・・・・・

666 :大学への名無しさん:04/05/18 00:53 ID:8cKr6IiX
 おや、難しそうな気がした。ちょい考える。

667 :655:04/05/18 00:58 ID:8iOXWxQe
>>656
遅れましたが、さんくすです。
明日(というか今日)学校で数学の教師に聞いてみます。

668 :大学への名無しさん:04/05/18 01:00 ID:8cKr6IiX
 僕の思考回路を全部書くことにしよう。
 足し算だからΣにできたらいいんだけど、数列に関する情報(とうさとかとうひとか)が一切書いてないから
 たぶんそんな手は使えないんだろう。するとコウ広範囲で言うと帰納法か・・・?
 帰納法をするとなると、n=k、k+1・・・k+5までの正しさを仮定する必要がある。これはめんどくさそうだ。
 他に何か手は無いか・・・。ちょっとa[7]やらa[8]やらずーっと計算してみよう。

 a[7]=1+0+1+0+1+0=3 a[8]=0+1+0+1+0+3=5 a[9]=1+0+1+0+3+5=10≡0
 a[10]=0+1+0+3+5+0=9 a[11]=1+0+3+5+0+9=18≡8 a[12]=0+3+5+0+9+8=25≡5
 a[13]=3+5+0+9+5=22≡2 a[14]=5+0+9+5+2=21≡1 a[15]=0+9+5+2+1=17≡7

 僕このへんで気づいたけど、どうかな、存在しそう?気づかないなら20くらいまでやってみたらいい
 大した計算じゃないよ。何故存在しないんだろうね。「そいつ以前の6項を足し合わせる」って何だ。

669 :大学への名無しさん:04/05/18 01:43 ID:vLYECWw3
>>668
a[13]からおかしくなってる

670 :大学への名無しさん:04/05/18 01:52 ID:LL5rYYVN
質問です、2001立教理学部の問題ですが、

狽フK=0から20n−1で、[21K/20]を求めよ。
ただしXを超えない最大の整数を[X]で表す。


さっぱりわかりません。指針としてはK=20m+rと置くようですが。
どなたか解答解説願います。

671 :大学への名無しさん:04/05/18 02:30 ID:9trrsjbQ
>>668にずーっと計算してみようって書いてあるから
Excelさんに頑張らせた結果

1010103509 8507987674
1389270952 5898796763
8992783875 8907655250
3055812129 3858587143
8141183856 1145292356

a(100)まで出しましたが全く方向性が分かりません
やはり間違ってたのか…?

672 :大学への名無しさん:04/05/18 02:33 ID:98bdu+5y
>>670 [21k/20]=[k+k/20]=k+[k/20]だから納21k/20]=婆+納k/20](0≦k≦20n-1)
[k/20]=i(i∈Z,i≧0)⇔i≦k/20<i+1⇔20i≦k<20(i+1)・・・@
0≦k≦20n-1のとき@を満たすiはi=0,1,2,・・・n-1だから
納k/20](0≦k≦20n-1)=琶](0≦i≦n-1)
∴納21k/20]=(20n−1)20n/2+(n−1)n/2=(401n−21)n/2
間違ってたらスマソ

673 :大学への名無しさん:04/05/18 03:01 ID:LL5rYYVN
ありがとうございます。

どうして0≦K≦20n−1のとき、@の範囲において
iが0≦i≦n−1の範囲になるかがわかりません。
詳しく説明を願いまする。

674 :大学への名無しさん:04/05/18 03:13 ID:Bzrn/kPt
>>670
Σn (1to20n) -Σ20n (1to n)
=210n^2-20n
じゃね?

675 :大学への名無しさん:04/05/18 03:22 ID:Bzrn/kPt
第2項ミスったけどいいや。

676 :大学への名無しさん:04/05/18 03:25 ID:98bdu+5y
>>672 なんかわけワカメな事をやっておりました。
20i≦k≦20(i+1)−1のとき[k/20]=i
i=0となるのはkが0〜19のとき
i=1となるのはkが20〜39
i=2となるのはkが40〜59 i=mとなるkは19個ずつある(0≦m≦n-1)

:
i=n−1となるのはkが20(n-1)〜20n-1
だから納k/20]=19×琶(0≦i≦n-1)

まだミスあるかもしれんからちょっと紙でやってみるっす

677 :大学への名無しさん:04/05/18 03:33 ID:98bdu+5y
>>676 19個ずつある→20個 19×琶→20×琶

678 :大学への名無しさん:04/05/18 03:36 ID:98bdu+5y
納21k/20]=10n(21n-2)

679 :大学への名無しさん:04/05/18 03:45 ID:LL5rYYVN
ほんとにありがたいのですが、理解できない・・・。
mの範囲は理解できたのですが。。

680 :大学への名無しさん:04/05/18 03:46 ID:98bdu+5y
どの部分か教えて

681 :大学への名無しさん:04/05/18 03:50 ID:LL5rYYVN
結局672が解答になるのですか?

最終的な解答はどれになるのでしょう?

682 :大学への名無しさん:04/05/18 03:58 ID:98bdu+5y
>>681マジですまない
[21k/20]=[k+k/20]=k+[k/20]だから納21k/20]=婆+納k/20](0≦k≦20n-1)
ここで
20i≦k≦20(i+1)−1のとき[k/20]=iであり
i=0となるのはkが0〜19のとき
i=1となるのはkが20〜39
i=2となるのはkが40〜59   i=mとなるkは20個ずつある(0≦m≦n-1)

:
i=n−1となるのはkが20(n-1)〜20n-1
だから納k/20]=20×0+20×1+20×2+・・・+20×(n-1)=20×琶(0≦i≦n-1)
∴納21k/20]=婆(0≦k≦20n-1)+20×琶(0≦i≦n-1)
       =(20n−1)20n/2+20(n−1)n/2=10n(21n-2)



683 :大学への名無しさん:04/05/18 04:06 ID:LL5rYYVN
どうもです、五分ほど考えてみます

684 :大学への名無しさん:04/05/18 04:28 ID:LL5rYYVN
すいません、大体理解できました。
どうも長い時間ありがとうございました。

685 :大学への名無しさん:04/05/18 04:42 ID:98bdu+5y
ヒントを使うともっとすんなり解決しましたね。ほんとゴメン
k=20m+r(0≦r≦19)とおくと0≦m≦n-1であり
[21k/20]=[k+k/20]=k+[k/20]=k+[(20m+r)/20]=k+m++[r/20]=k+m(∵[r/20]=0)だから
納k/20]=婆(0≦k≦20n-1)+芭(0≦m≦n-1)=10n(21n-2)



686 :大学への名無しさん:04/05/18 04:52 ID:98bdu+5y
>>685 m=iとなるrは20通りありを追加 +芭(0≦m≦n-1))→+20芭(0≦m≦n-1)
に訂正 寝てないので頭が働かん・・・

687 :大学への名無しさん:04/05/18 05:02 ID:LL5rYYVN
いえ、最初の解答のほうがわかりやすかったので良かったです。

あなたは大学生の方ですか?

688 :大学への名無しさん:04/05/18 05:07 ID:98bdu+5y
>>687受験生ですよ。本当に変な解答ばっかでごめん。手元に解答とかがあればも
う少しわかりやすくできたと思うのですが。漏れの下手な答案のせいで時間を多
く消費させてしまい本当に申し訳ない。

689 :大学への名無しさん:04/05/18 05:10 ID:LL5rYYVN
いえいえ、こちらこそ夜中にありがとうございました。
とても同じ受験生には思えないw

でわ失礼いたします。。

690 :大学への名無しさん:04/05/18 10:54 ID:SbfPR8Xr
a(n+1)=1/1+a(n)のときa(n)の極限値が存在することを説明しその極限値を
↑                             求めよ。
漸化式ね

どなたか教えてください。

691 :不死鳥@ささみ食えよ ◆FLYIGoocug :04/05/18 16:18 ID:KOZuE9Sh
A=x^2-4x+6
B=x^4+8x^3+(a+26)x^2+b+28

BがAで割り切れるとすると
a=2 b=8
である。
またx=2+√3 のときB=?

の?を求める問題なんですが、答えは25なんですが
どうやってなるのでしょうか?
自分はいつまでやっても−8にしかならないのですが。

x=2+√3を変形してx^2-4x+1=0 としてBを割った余りって-8になりませんかねぇ。


692 :不死鳥@ささみ食えよ ◆FLYIGoocug :04/05/18 16:20 ID:KOZuE9Sh
上の訂正 問題文に間違いあり

A=x^2-4x+6
B=x^4+8x^3+(a+26)x^2-48x+b+28

BがAで割り切れるとすると
a=2 b=8
である。
またx=2+√3 のときB=?

の?を求める問題なんですが、答えは25なんですが
どうやってなるのでしょうか?
自分はいつまでやっても−8にしかならないのですが。

x=2+√3を変形してx^2-4x+1=0 としてBを割った余りって-8になりませんかねぇ。


693 :大学への名無しさん:04/05/18 16:26 ID:ge3qiJDc
BがAで割り切れるとすると   は、またx=2+√3 のときB=?
にかかるのか?

694 :不死鳥@ささみ食えよ ◆FLYIGoocug :04/05/18 16:35 ID:KOZuE9Sh
>>693
かかります。
あと?は二桁か負の一桁です(マーク式で二つのカタカナ分ってことです)

695 :大学への名無しさん:04/05/18 16:52 ID:ge3qiJDc
>>694
問題、あってる?

696 :大学への名無しさん:04/05/18 16:56 ID:ge3qiJDc
しね、絶対25であってる。もぅ、考えちゃったじゃないか。

697 :大学への名無しさん:04/05/18 17:01 ID:ge3qiJDc
>>692
去年受験したから数学は1年ぶり、それを踏まえて頼む。

解@
まさに、a、b、xそれぞれの値を代入してBを求める。
ただ、マークじゃ時間かかりすぎ。

解A
B=A×「xの二次式」・・・P なんだから、上記のa、bを代入しP
を求める。こうすれば一発。結局、Pのxの係数(x^2と定数は自明)
求めるだけですむ。

わかります?

698 :大学への名無しさん:04/05/18 17:05 ID:ge3qiJDc
>>694
つうか、割り切れるのに余り求めるな

699 :大学への名無しさん:04/05/18 17:06 ID:1dep59mA
>>697

バカっぽい (ry

700 :大学への名無しさん:04/05/18 17:07 ID:ge3qiJDc
>>699
久しぶりに数学と痛んだから、馬鹿っぽいとか言うな。

701 :不死鳥@ささみ食えよ ◆FLYIGoocug :04/05/18 17:44 ID:KOZuE9Sh
いや、答えが25なのは知ってるよ。
こっちの勘違いが解ける様に途中式を示して貰いたいわけだがww

702 :大学への名無しさん:04/05/18 17:50 ID:ge3qiJDc
>>701
>>697のAのやり方はわかりにくい?

703 :大学への名無しさん:04/05/18 17:59 ID:ldsL+k9l
>>691-692
a=2
b=8
x=2+√3のときB=25

これらの仮定のもとで
正しい問題文を復元しよう

x=2+√3のときx^2-4x+6=5かつB=25より
4次式Bが題意のような有理数係数で因数分解されるためには
B=(x^2-4x+6)^2=x^4-8x^3+28x^2-24x+36であることが必要

よってBのxの係数-48は誤りであり
正しい式としては
B=x^4+8x^3+(a+26)x^2-24x+(b+28)
などが予想される


704 :大学への名無しさん:04/05/18 18:04 ID:ldsL+k9l
ああああああああああああああ

(x^2-4x+6)^2の計算にミスがあった
B=x^4+8x^3+(a+26)x^2-48x+(b+28)
これで正しい

つまり>>692の問題文は正しい
正直スマンカッタ

705 :大学への名無しさん:04/05/18 18:13 ID:ge3qiJDc
>>704
でも、結果的には2乗の形になりますよね。
係数比較で。

706 :大学への名無しさん:04/05/18 18:19 ID:98bdu+5y
(x^2-4x+6)^2=x^4-8x^3+28x^2-48x+36だから問題文の+8x^3→-8x^3では?

707 :大学への名無しさん:04/05/18 18:20 ID:ge3qiJDc
>>706
そうだ!

708 :大学への名無しさん:04/05/18 18:29 ID:ldsL+k9l
>>692
別に割り算した余りから解いてもいいけど
-8にしかならないのは
いつも同じ箇所で計算ミスしてるだけだろう

                        1    -4    11
            ─────────────────
1   -4   1   )   1   -8   28   -48    36
                1   -4   1
              ────────────────
                    -4   27   -48
                    -4   16    -4
                   ─────────────
                         11   -44   36
                         11   -44   11
                        ──────────
                                   25
                                  ^^^^^^

709 :大学への名無しさん:04/05/18 18:31 ID:ldsL+k9l
>>706
俺の考察は惜しいとこまでいってたんだな
グリーン狙ったらピンに弾かれて池ポチャしたような気分だ

710 :大学への名無しさん:04/05/18 18:37 ID:98bdu+5y
708氏おつかれさまでした。みごとな答案でした。
数学を教えていらっしゃるのですか?
706はたまたまみかけたもので・・・スミマセン。

711 :大学への名無しさん:04/05/18 21:39 ID:+2NCWdEM
n→∞の極限値を求めよ。
a[1]>0 a[n]=2/(2+a[n-1]) (n>=2)
コレ、分母に数列があっても解けるの?

712 :大学への名無しさん:04/05/18 21:46 ID:hznVt0oC
実数x,yが不等式x^2+y^2≦4,x+√3y≦2,x≧−1を全てみたしている。
このときy+1/x−3の最大値を求めよ。

答えはk=−3+2√6/5と解かっているのですが計算式がわかりません。
計算式とともに解き方を書き込んでください。お願いします

713 :大学への名無しさん:04/05/18 22:29 ID:LL5rYYVN
a∈Z


これどういう意味ですか?aが何かに含まれるってのはわかるんですが。

714 :大学への名無しさん:04/05/18 22:51 ID:hznVt0oC
Zってちょっと変わった書き方してあったら整数全体の集合の事だと思う

715 :不死鳥@ささみ食えよ ◆FLYIGoocug :04/05/18 22:56 ID:KOZuE9Sh
ご丁寧に指導して頂いて烈しくサンクスです。ありがd。

>>708
一瞬で分かりました。単なる計算ミスの螺旋から抜けてませんでした。

一番右下の36-11=25 のとこをなぜか永遠と 36-44としていましたw

レベル低い質問でスマソ。

716 :大学への名無しさん:04/05/18 23:00 ID:kVL8hhlH
a>0でx>0のとき
y=(1+a/x)^xが増加関数であることを示せ
この問題で、x乗なので普通に微分は無理なので対数とって微分しますよね
すると
(1/y)*(dy/dx)=log(1+a/x)-(a/x+a)
となると思うんですが、これが増加関数であると示すのはどうすればいいですか?
あと本に(1+a/x)と書いてあって(これはパソコンで書くのと同じ表記です)1+a/xなのか(1+a)/xなのか
迷ったのですが普通はどうなのでしょう

717 :大学への名無しさん:04/05/18 23:04 ID:VsoC/UsF
>>716
y>0 だから log(1+a/x)-(a/x+a) > 0 を示せば良い

718 :大学への名無しさん:04/05/18 23:13 ID:kVL8hhlH
>717
すみません。それをどうするのかが知りたいです

719 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/18 23:18 ID:TEUYPwSK
>>712
y+1/x−3=kとおいてグラフ書いて条件の範囲をみたす最大のkを見つければよい。
とにかくグラフ書いてみるべし。
分数の表記が曖昧でよく分からないから詳しくは答えられない。

720 :大学への名無しさん:04/05/18 23:34 ID:fJC8pPYH
質問です

整式で表された関数f(x)が、任意のx,yに対して
f(x+y)=f(x)+f(y)+3xy(x+y+2)-4
を満足するとき、次の問いに答えよ。

1)f(0)を求めよ
2)f'(0)=2のとき、f'(x)を求めよ

*この、f(x+y)の概念が全然分かりません。スタンダード数学演習の問題ですが、どなたか
解法を分かりやすく教えて下さい。

721 :大学への名無しさん:04/05/18 23:37 ID:7Os80v+3
高3までの内容で高一の基礎から難問までできる良い問題集ありませんか?あったら教えてください。

722 :大学への名無しさん:04/05/18 23:42 ID:2qFTp/+W
>>720
xの関数なんだろ?
だったらyはただの数だよ
f(y)はxで微分したら0
yじゃなくて1だったらどうかなと考えてみて

723 :大学への名無しさん:04/05/18 23:44 ID:fJC8pPYH
質問もうひとつ

lim_[x→3](ax^2+bx+3)/(x^2-2x-3)=5/4  が成り立つ時、定数a,bの値を求めよ

とあるのですが、分子分母にそれぞれx=3を代入すると、分母が0なので、分子が0でなければ
極限値は存在しない、とあります。
………何故?
というか、正直なんでそのまんま代入して終わり、にならないんですか?
極限値に関する商の公式の意味が分かりません。


724 :720:04/05/18 23:46 ID:fJC8pPYH
>722
レスありがとうございます。
1で考えてみたんですけど…よく分からず。式の右側で3xy云々言ってるのもよく分からず…。
1で考えて解いてみるとどういう風になるんでしょうか?
頭悪くてすいません…。

725 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/18 23:51 ID:TEUYPwSK
>>720
x、yが任意の値について成り立つんだからx、yに適当な値を代入してみるとか。

726 :720:04/05/18 23:51 ID:fJC8pPYH
んんn???
f(y)はxで微分したら微分したら0。
例えばf(x)がax^2+bx+cだったら、f(y)ってどう表現されますか?

…自分関数に問題あるなこれ…。


727 :720:04/05/19 00:04 ID:gMu0QYbP
すいません、720ですが、
f(0+y)=f(0)+f(y)+3y0(0+y+2)-4
と考えて、
f(y)=f(0)+f(y)-4
f(0)=4
という発想でいいでしょうか??

728 :大学への名無しさん:04/05/19 00:07 ID:kzqdrguc
>>726
高校では2変数の関数は扱わないからxの関数なら
f(y)はxを含まない限りどれだけ複雑な形でもただの定数ってこった

>例えばf(x)がax^2+bx+cだったら、f(y)って

f(y)=ay^2+by+c
だけどこれはxについては0次、つまり微分したら消える定数

>>727
いいよ。別にx=y=0でもいい。

729 :大学への名無しさん:04/05/19 00:09 ID:kzqdrguc
×含まない限り
○含まないから

730 :720:04/05/19 00:31 ID:gMu0QYbP
728さんのレスで凄い納得したのに、




なんで2)がわかんないんだろう…


731 :大学への名無しさん:04/05/19 00:34 ID:6LAcJXce
>>730
まさかとは思うが
f(0)を微分するんじゃないよ
f(x)をxについて微分して、0を代入するんだよ

いや、俺の苦い思い出だ・・・


732 :大学への名無しさん:04/05/19 00:44 ID:hbmk5yn5
>>723
もし、x=3のとき(分子)≠0だったら
(左辺)→±∞となり題意に不適
よって(分子)=0が必要となる

733 :大学への名無しさん:04/05/19 00:44 ID:NXsVQ8Qt
>>730
この手の関数方程式は解き方にバリエーションがほとんどない
いくつか類題を解けば慣れる


734 :720:04/05/19 00:46 ID:gMu0QYbP
あのー、もうわけわかんなくなってきてるんですけど、

f(x+y)=f(x)+f(y)+3xy(x+y+2)-4
f'(0)=2の時、f'(x)を求めるという問題で、答えが3x^2+6x+2

式、なんとなくいじってみたんですが、
f(x)=f(x+y)-f(y)-3xy(x+y+2)+4
f'(x)=f'(x+y)-f'(y)-3y(x+y+2)
f'(0)=f'(0)-f'(0)-3y(0+y+2)=2
f'(0)=3y^2+6y+2

…………なんかムチャクチャやってる気がする…
なんでyが出てくるんだろう…

735 :大学への名無しさん:04/05/19 00:48 ID:6LAcJXce
f(y)は定数とあれほど。。。

736 :720:04/05/19 00:50 ID:gMu0QYbP
(;´Д`)


737 :720:04/05/19 00:56 ID:gMu0QYbP
xで微分したら消えるんだから…やっぱりでもy式が残るんですが、
自分なんか定義が頭に入ってないんでしょうか
f'(x)を出すんだからxにしちゃっていいとか?

ほんと頭悪くてすいません

738 :大学への名無しさん:04/05/19 01:02 ID:6LAcJXce
ちょっと待ってろ、今書いてやる、色々といじくるんだよ。

739 :大学への名無しさん:04/05/19 01:02 ID:NXsVQ8Qt
>>731
>>734
f(x+y)=f(x)+f(y)+3xy(x+y+2)-4
両辺をyで微分して
f'(x+y)=f'(y)+3x(x+y+2)+3xy
これにy=0を代入して
f'(x)=f'(0)+3x(x+2)=3x^2+6x+2

こういう答案を想定してる?
f(x)が任意のxで微分可能な保証が問題文にないから
f(x+y)やf(x)をいきなり微分することはできないと思うよ

この問題ではf'(0)=2だけが保証されているから
等式の一方の極限がf'(0)となるような式を作り出すしかないと思う


740 :大学への名無しさん:04/05/19 01:03 ID:6LAcJXce
あ、でもf'(y)の形がでればyをxに変えればそれが答えだよ

741 :大学への名無しさん:04/05/19 01:05 ID:6LAcJXce
>>739
あ、ほんとだ・・てか今まで問題文読んでなかった。

742 :720:04/05/19 01:11 ID:gMu0QYbP
自分としてはxで微分したつもりでいたんですけど…(だからyが残るのか!)
大筋で739さんの考えでやったと思います

皆さんお手を煩らわせてすみません。
でもなんやら…。何が分かってないのかそもそも何も分かっていないのか。
つまりyで微分は出来ないってことですよね…。

(;´Д`)

夜中にすいません

743 :大学への名無しさん:04/05/19 01:21 ID:NXsVQ8Qt
f(0)=4

f(x+y)
=f(x)+f(y)+3xy(x+y+2)-4
=f(x)+f(y+0)+3xy(x+y+2)-f(0)

y≠0のとき
3x(x+y+2)+{f(y+0)-f(0)}/y={f(x+y)-f(x)}/y
これは任意のxで成り立つ

この等式の左辺と右辺それぞれに対してy→0の極限をとると
導関数の定義より
左辺→3x(x+2)+f'(0)=3x^2+6x+2
右辺→f'(x)

以上より
任意のxに対してf'(x)=3x^2+6x+2

744 :大学への名無しさん:04/05/19 01:26 ID:kA12dycd
>>708
う、うまい……
わかりやすさに溢れてた。スレ違いスマソ。

745 :大学への名無しさん:04/05/19 01:29 ID:6LAcJXce
>>743
おお、すげえ
4を4のまま扱ってたよ・・・orz


746 :大学への名無しさん:04/05/19 01:35 ID:NXsVQ8Qt
>>744
ある意味ハメ技であって他のやり方を知らない
知ってる人がいたら教えてほしい

やり方を知っているか否かで決まる悪問とも思う

747 :大学への名無しさん:04/05/19 01:37 ID:NXsVQ8Qt
>>746
744じゃなくて745の間違い

748 :大学への名無しさん:04/05/19 01:40 ID:hbmk5yn5
>>747
関数方程式、っていうか微分方程式は
事実上旧課程ですからねえ

749 :大学への名無しさん:04/05/19 01:40 ID:6LAcJXce
試験ででたら速攻で微分してたなあ・・・うん、為になった、(1)はちゃんと誘導になってたのね。

それでも
(f(x+y)-f(x)}/y はできでも f(y+0)-f(0)}/y は作れるか微妙・・・。精進しよう。


750 :720=734:04/05/19 01:41 ID:gMu0QYbP
>743
すごい…
まさか自分が教わって解ると思わなかった…
でも思いつく自信ないカモ…

コピーコピー

ほんと夜中にどうもありがとうございます。
>745さんもありがとう。

751 :720=734:04/05/19 01:43 ID:gMu0QYbP
>748
そうなのか…(ニガワラ
素直に2003版解いてたんだが

752 :大学への名無しさん:04/05/19 01:44 ID:NXsVQ8Qt
>>750
与えられた条件はf'(0)=2だから
そこから逆算していくように
f'(0)になる式を作ろうとすれば道が開ける(ようにしくまれている)



753 :720=734:04/05/19 01:45 ID:gMu0QYbP
多分二人の発想の半分ぐらいにしかついていってない

数学苦手だ…ガンバロウガンバロウ

754 :720=734:04/05/19 01:47 ID:gMu0QYbP
長いことつきあってくれてどうもありがとうございました。
夜中に本当にごめんなさい。

755 :大学への名無しさん:04/05/19 03:36 ID:HYCDlv/b
新課程の3Cは何が変わるんですか?

756 :大学への名無しさん:04/05/19 10:42 ID:hbmk5yn5
>>755
out : 曲線の弧長
in : 行列による点の移動(一次変換)

757 :某予備校数学講師:04/05/19 15:25 ID:Ki44TJyo
>>756
度々の履修内容変更
もー わけわかメ! (ry

758 :大学への名無しさん:04/05/19 15:30 ID:HGphngut
 なんで誇張なくしたんだろ。積分の概念つかみやすくなるのに。
 ∫√(x^2+y^2) ちっちゃいxとちっちゃいyで三平方。全部足したら誇張。
 分かりやすい! 
 =∫√(dx^2+dy^2)=∫√(1+(dy/dx)^2 dx dxくくりだしていいの?!
 =∫√(dx/dt)^2+(dy/dt)^2 dt  dtでくくった!

 ライプニッツ泣いてるぜ。

759 :大学への名無しさん:04/05/19 16:34 ID:WVV9KgFP
高一です。数T絶対値。
a<0のときの l−al+la−2l を絶対値の記号をつかわずにあらわせ。

明日テストで時間がありません。本当に困ってます。
どうやってやるんですか??詳しい解説をお願いします。

760 :大学への名無しさん:04/05/19 16:47 ID:NXsVQ8Qt
>>759
>絶対値の記号をつかわずにあらわせ

|-a|+|a-2|=√(a^2)+√((a-2)^2)

「^2って何ですか?」って聞くのはナシね

761 :大学への名無しさん:04/05/19 17:04 ID:+nme2YVD
>>665
>数列{a(n)}を次のように定義する。
>a(n)=〔{a(n-1)+a(n-2)+a(n-3)+a(n-4)+a(n-5)+a(n-6)}の1の位の数〕(n≧7)
>a(1)=1 a(2)=0 a(3)=1 a(4)=0 a(5)=1 a(6)=0
>この時{a(n)}の部分列で、0,1,0,1,0,1 となるような部分列は存在しないことを
>示せ。

a(n)=〔{a(n-1)+a(n-2)+a(n-3)+a(n-4)+a(n-5)+a(n-6)}の1の位の数〕(n≧7)・・・@
a(1)=1 a(2)=0 a(3)=1 a(4)=0 a(5)=1 a(6)=0・・・A



762 :大学への名無しさん:04/05/19 17:05 ID:+nme2YVD
f(n)=a(n)+2a(n+1)+3a(n+2)+4a(n+3)+a(n+5) とおくと
f(n+1)-f(n)={a(n+1)+2a(n+2)+3a(n+3)+4a(n+4)+a(n+6)}-{a(n)+2a(n+1)+
+3a(n+2)+4a(n+3)+a(n+5)}=a(n+6)-{a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)a(n+5)}
≡0(mod5)(∵@)
したがって、f(n)≡f(n-1)≡f(n-2)≡・・・≡f(1)≡a(1)+2a(2)+3a(3)+4a(4)+a(6)
≡4(mod5)(∵A)が任意のn(≧1)で成立。
ところが、0,1,0,1,0,1 となるような部分列では f(n)≡2(mod5) となり矛盾。

このような漸化式の問題では「不変量」を見つけて、それと初期条件などとの矛盾
を導く方法が有効なことが多いよ。

763 :>>760:04/05/19 17:12 ID:TGedBOV4
真面目におねがいします。本当に困ってるんです


764 :大学への名無しさん:04/05/19 17:19 ID:TyiIXNIz
>a<0のときの l−al+la−2l を絶対値の記号をつかわずにあらわせ
-a>0だからl−al=-a,a−2<-2<0だからla−2l=-a+2
∴l−al+la−2l=-2a+2

765 :大学への名無しさん:04/05/19 17:23 ID:TyiIXNIz
>>763 ちなみに760は正しいぞ

766 :>>764  ありがとうございます:04/05/19 17:24 ID:TGedBOV4
なんで -a>0になるんですか??そこを詳しくおねがいします。

767 :大学への名無しさん:04/05/19 17:31 ID:k8XwhA0w
l-al>0の場合はそのまま符号を取る事ができて
l-al<0だと-を付けて外さないといけないから、だったか?

相加相乗平均って
a/2+b/2=√abで間違ってないよね?
何かテストでペケされたんだが。
a+b=2√abのが基本形なんでしょうか

768 :大学への名無しさん:04/05/19 17:39 ID:TyiIXNIz
中学でやると思うんだが・・・不等式の両辺に負の数をかける(わる)と不等号
の向きが変わる
じゃあ簡単な例で -1<0・・・@は、わかる? 
@の両辺に−1をかけると左辺:−1×−1=1 右辺:0×−1=0 だから
(-1)×(-1)>0×(-1)から@⇔1>0
>>767 相加相乗で等号が成立するのはa=bのとき
    相加相乗平均 a>0,b>0のとき
    a/2+b/2≧√ab


769 :大学への名無しさん:04/05/19 17:42 ID:GhgKhiTA
いまの高1は中学で不等式やってないよ
ゆとり教育って奴ですはい

770 :>>767:04/05/19 17:45 ID:+SA4WEHj
l-al>0で-なのになんで0より大きいんですか?バカですみません

771 :大学への名無しさん:04/05/19 17:49 ID:0oa2tV2q
>>756
曲線の誇張無くなるのか・・・苦労してマスターしたのに・・・orz

772 :大学への名無しさん:04/05/19 17:53 ID:GhgKhiTA
2>0 より  |2|=2
−a>0 より |−a|=−a

−2<0 より |−2|=2
a<0   より  |a| =−a

773 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/19 18:56 ID:HCDCPM+2
絶対値は数直線上(に限らないが。複素数なら複素数平面上)での原点(0)からの距離を
あらわすと理解すれば忘れることはないと思うよ。
たとえば-3と3はどちらも原点からの距離は3だからl±3l=3
ここで重要なのは

 距 離 が 負 っ て い う の は あ り え な い 

ということ。
だから必要に応じて−1を掛けて正にするのよ。
つまり lal について考える時
aが正ならそのまま lal=a
aが負なら距離が負というのはあり得ないから-1を掛けて正にしなくちゃいけないから lal=-a
て感じになる。
まぁこんな説明なくても分かってるのかもしれないけど一応。

774 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/19 18:58 ID:HCDCPM+2
距離が負ってのがありえないというのは
家から学校までは -15kmです。
とは言わないだろ?ってことね。
まぁ書き込まなくても分かってただろうとは思うけど。

775 :大学への名無しさん:04/05/19 19:41 ID:0rOcvcqy
数Cの行列の問題で
行列A,B(成分の一部が文字)が
(A+B)^2=A^2+2AB+B^2を満たす時、
A,Bを表せという問題で、
答えはAB=BAを作って成分同士を比較しています。
なぜ、交換可能を証明すれば、
(A+B)^2=A^2+2AB+B^2は満たされるのですか?

776 :大学への名無しさん:04/05/19 19:42 ID:NDOY50n2
左辺を展開しなさい

777 :○○社:04/05/19 19:43 ID:Ak0usJBt
AB=BAになるから
(A+B)^2=A^2+AB+BA+B^2 だよ。
これにAB=BAを代入すれば成り立つ。

778 :大学への名無しさん:04/05/19 20:00 ID:ddIW/eWT
次の関数のn回導関数
(1)1/(2x^2-x-1)
(2)x^2cosx
(3)x^3e^(-x)

nになるとマジわからない。。
よろしくおねがいいたします。。。。

779 :大学への名無しさん:04/05/19 20:03 ID:Ak0usJBt
(1)1/(2x^2-x-1)


こんなの求められるのかよ。

780 :大学への名無しさん:04/05/19 20:05 ID:NDOY50n2
部分分数展開すれば可能

781 :大学への名無しさん:04/05/19 20:06 ID:NDOY50n2
>>778
というわけで、3、4階くらいやって予想をつける

782 :大学への名無しさん:04/05/19 20:07 ID:ddIW/eWT
予想できなくて困ってます。。。

783 :大学への名無しさん:04/05/19 20:22 ID:NDOY50n2
>>778
(1)は780でいったとおり
(2)はcos sinでなくその前にかかっている定数、xの係数、x^2の係数が
どんな数列になっているか考える
(3)もeでなくx^3の係数、x^2の係数、xの係数、定数項がどんな数列かを考える

784 :大学への名無しさん:04/05/19 20:29 ID:0rOcvcqy
>>777
A,Bが行列の時は、
(A+B)^2は公式を使えず、
(A+B)(A+B)=A(A+B)+B(A+B)で解かないといけない
ルールがあるのですか?

785 :○○社:04/05/19 20:30 ID:Ak0usJBt
>>784
そうだよ。
ABとBAが可換じゃなかったら、展開公式使えないよ。

786 :大学への名無しさん:04/05/19 20:35 ID:0rOcvcqy
>>785
サンクス。

787 :大学への名無しさん:04/05/19 20:39 ID:5DkAgRqQ
2*2^(n-1)≠2^n

ですよね?


788 :○○社:04/05/19 20:41 ID:Ak0usJBt
等号成り立ちますよ

789 :大学への名無しさん:04/05/19 20:44 ID:5DkAgRqQ
成り立つんですか?

じゃあ初項2、公比2の等比数列の一般項は



790 :789:04/05/19 20:45 ID:5DkAgRqQ
すいません、途中で書き込みしてしまいました。
成り立つんですか?
じゃあ初項2、公比2の等比数列の一般項は
2*2^(n-1)なので
2^nとしていいんですよね?

791 :大学への名無しさん:04/05/19 20:57 ID:cxNlGPjq
>>790
いいとも〜

792 :大学への名無しさん:04/05/19 21:53 ID:J8BQpYP1
>>778
fのn回微分をf(x)(^n)とすると
(2)(3)では、
{f(x)・g(x)}(^n)=Σ(r=0〜n) nCr f(x)(^n-r) ・ g(x)(^r)

になる。当たり前だけど。

793 :大学への名無しさん:04/05/19 23:22 ID:dQX8zFIs
質問です。ベクトルの式で、
|→AB|^2|→AC|^2
という式を、以下のように展開しました。このようにして計算した結果、答えた違
うようなのですが、どこがおかしいでしょうか?

|→AB|^2|→AC|^2=→AB・→AB・→AC・→AC=(→AB・→AC)(→AB・→AC)



794 :大学への名無しさん:04/05/19 23:27 ID:J8BQpYP1
→AB・→AB・→AC・→AC
これはなんだと。内積なのかと。

795 :大学への名無しさん:04/05/19 23:30 ID:TyiIXNIz
|→AB|^2|→AC|^2が|→AB|^2×|→AC|^2とすると
→AB・→AB・→AC・→AC は(→AB・→AB)×(→AC・→AC)では?


796 :大学への名無しさん:04/05/19 23:32 ID:dQX8zFIs
んんん?(´Д`)、、馬鹿なんでよくわかりません・・・。
|→AB|^2=→AB・→ABとなりますよね?

もうちょっと具体的にいうと、ベクトルの△ABCの面積公式で、|→AB|^2|→AC|^2
という部分がありますよね?
→AB・→ACが問いから与えられてたので、上記のようにして計算したら間違えまし
た。

797 :大学への名無しさん:04/05/19 23:34 ID:dQX8zFIs
>>795
自分、
(→AB・→AB)×(→AC・→AC)と、
→AB・→AB・→AC・→ACの区別があまりついてないようです、、、、
うわぁ〜、、ん、、、

798 :大学への名無しさん:04/05/19 23:36 ID:J8BQpYP1
そもそもベクトルとスカラーの意味わかってないんじゃないか?

799 :大学への名無しさん:04/05/19 23:40 ID:dQX8zFIs
>>798
ベクトル=向きがあります。
スカラー=値そのものです。
と、思ったものの、内積とはそもそも何か、などなど考えてるうちに、何が
なんだかわかんなくなってきた。どうしよう。

800 :大学への名無しさん:04/05/19 23:41 ID:J8BQpYP1
>>797
内積ってのはベクトル2本があるときに始めて定義される スカラー なのだよ。
|↑AB|ってのはベクトルの大きさ なのだよ。根本的に違う。
以下矢印省略
|AB|^2=(AB・AB)は正しいが
(AB・AB)(AC・AC)=(AB・AC)(AB・AC)が成り立つ保障はどこにもない。

801 :大学への名無しさん:04/05/19 23:42 ID:TyiIXNIz
(三角形ABCの面積)=1/2〔(|→AB||→AC|)^2−(→AB・→AC)^2〕~1/2
|→AB|^2=→AB・→ABですが|→AB||→AC|≠→AB・→ACです。
→AB・→AC=|→AB||→AC|cos∠BAC

802 :大学への名無しさん:04/05/19 23:49 ID:dQX8zFIs
>>800-801
ありがとうございました。だいたい解かりました。
とりあえず、これでようやく先に進めそうです。ずっとひっかかってたんです。
まだ個人的に漠然としてる部分もややありますが、あとは今後自分で調べるなどし
て、理解を深めようと思います。
どもうありがとうございました。

803 :大学への名無しさん:04/05/19 23:57 ID:J8BQpYP1
×どもう
○どうも

804 :大学への名無しさん:04/05/20 12:50 ID:/CqKvGTl
質問です
a>0とする
関数f(x)=|x^3-3a^2x| -1≦x≦1における最大値をM (a) とする時、
M(a)をaを用いて表せ
また、M(a)を最小にするaの値を求めよ

これって何か解くコツとかってあるんでしょうか?
とっさに場合分けするのかな〜?と思ったんですが、なんか。

805 :大学への名無しさん:04/05/20 12:56 ID:/CqKvGTl
804つづき

解答見たら、f(ーx)=f(x)とか言ってて…

806 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/20 13:10 ID:M6m2hukI
>>804
f(x)=f(-x)だからx≧0において考えれば十分。ってことを考えろってことだと思うよ。
その解答は。

807 :大学への名無しさん:04/05/20 13:12 ID:/CqKvGTl
すいません頭が悪い…

f(-x)=f(x)だったら、どういう意味が生じるんでしょうか?
分かりそうで分からない

808 :大学への名無しさん:04/05/20 13:38 ID:5XDOtSU2
グラフで見ると、y軸について対称

809 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/20 13:39 ID:AQgpcLqH
f(x)=x^2 f(x)=cosx f(x)=lxl
例えばこの3つはf(x)=f(-x)だよね?
この三つのy=f(x)のグラフを書いてみてください。
その意味がすぐに気がつくと思います。

それが分かったら次はこの問題のように全体に絶対値がつくと
グラフ上ではどうなるのか考えてみてください。
それは y=x^2-4とy=lx^2-4lのグラフを書き比べてみれば分かると思います。

810 :大学への名無しさん:04/05/20 13:51 ID:/CqKvGTl
あ、そうか!

本当だ、書いていってみたら分かった!
丁寧にありがとうございました!!!

811 :大学への名無しさん:04/05/20 14:16 ID:W6XkXl8z
>>804
f(x)=| |≧0
だと思うけど。

812 :大学への名無しさん:04/05/20 16:42 ID:eH+s+FyQ
2<e<3は証明なしで使っていいですか?

813 :大学への名無しさん:04/05/20 17:15 ID:Hmt3JhSM
次の関数の極値を求めよ。
f(x)=e^(-x)sinx
g(x)=x^(2/3)(x-1)^(2/3)

できません。
よろしくおねがいいたします。

814 :大学への名無しさん:04/05/20 18:03 ID:S8q9gkJh
>>813
積の微分だよ

815 :大学への名無しさん:04/05/20 18:33 ID:O8vi7Rsb
参考書スレにいくと旧帝志望とかばかりですが
ここはそうでもないですね

816 :大学への名無しさん:04/05/20 18:56 ID:nZZdbh9H
>>812
 問題の趣旨によるけどね。極端なこと言ったら
「2<e<3を証明せよ」とかいう問題も無いことは無いだろう。
 基本的には問題文に与えられてるハズだけど。
>>813のg(x)はとっさに対数微分したくなった。まぁそこまでやらんでもいいかな。
 3/2y’/y=1/x+1/(x-1)=(2x-1)/x(x-1)

817 :大学への名無しさん:04/05/20 20:16 ID:WferXD3V
PV^5/3=P'(8V)^5/3を求めるとP'=P/32になりますか?どうしても(P^5/3)/32になっちゃうんですけど。

818 :817:04/05/20 20:26 ID:WferXD3V
分かったんでもう結構です。(8V)^5/3で5/3乗をVだけに架けて8に架けなかったのが原因でした。

819 :大学への名無しさん:04/05/20 20:38 ID:CPMbLZME
>>817
解決してるみたいだから別にいいけど
ここは物理スレじゃないよw

820 :大学への名無しさん:04/05/20 21:48 ID:pz2qfPHt
お願いします

3で割った余りが2、11で割った余りが7
これを満たす3桁の自然数の個数は何個か?そのうち最大のものは何か?
最小のものは何か?

二桁の自然数のうち、3または7で割り切れる数の和を求めよ。また、3でも7でも
割り切れない数の和を求めよ。

xに関する不等式 6X^2-7X-3≦0、 X^2-(2a-4)x+a^2-4a+3>0
を同時に満たすXが存在しないとき、定数aの値の範囲を求めよ。

はじめ2つあった細胞が、一分後に3倍に増加する。はじめの2つの細胞が増え始めてから、
5分後に30個ずつ死んでいく。一分間に死ぬのは30である。はじめの二つが増え始めてから、
n分後(n=4,5..........)の細胞の数をanとするとき

a4の値を求めよ。a(n+1) をanで表せ・

anをnで表せ。ただし、細胞の増加は、n(1,2,3....)分後に瞬時に起こり
減るのはN=5からである。

821 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/20 21:56 ID:SMhuSIYJ
>>820
どこまで考えてどこが分からないのかを教えていただけるとありがたい。
さすがに問題だけ投下してお願いします。だけだとなんだか宿題をとかされてるような気分になるよ(笑

822 :大学への名無しさん:04/05/20 22:23 ID:o9ZwTHQl
あの〜、気になる質問ですが、
≧と>の使い方がよく分かりません。
例えばaの場合分けで1<aのとき、なのか1≦aのときなのか。
やっぱりその時についての判断なんですかね・・・
正解は>なのに≧になったりしてて・・・

823 :大学への名無しさん:04/05/20 22:29 ID:t2ro7prL
>>822
真実はいつも一つ!ъ( ゚ー^)

824 :大学への名無しさん:04/05/20 22:48 ID:qWfhQF4L
>>822
問題によるけど、たとえば2次関数の最大・最小の問題で軸の位置を場合わけするときとかは
好きにしていいよ
a<0、0≦a<1、1≦a
a≦0、0<a≦1、1<a
a≦0、0≦a≦1、1≦a
など。その値(0とか1など)をaに代入しても成り立ってれば=つけていいんじゃない

825 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/20 22:56 ID:SMhuSIYJ
>>822
使い分けとか以前に二つの記号は意味がちがうよ。
a≦1なら「aは1以下」1を含む。(aは1または1未満)
a<1なら「aは1未満」1を含まない。
正直これがわからないと算数もできないと思う。

826 :大学への名無しさん:04/05/20 22:57 ID:o9ZwTHQl
ありがとうございました。
まあ無難なのは代入することですね。

827 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/20 23:09 ID:SMhuSIYJ
確認する時は代入するのがいいけど。
てか質問が漠然としすぎてて何が分からないのかわからん。

828 :大学への名無しさん:04/05/20 23:28 ID:tAE/5bm2
数Vの積分についての質問です。

部分積分を使うのってどんな時ですか?
『ログがあるときは使う』などのように、
決まりのようなものはありませんか?

829 :大学への名無しさん:04/05/20 23:34 ID:nZZdbh9H
>>828
 問題演習いっぱい積みな。部分積分もあくまで1つの手法だからさ。
 絶対に正しいとは言わないけれど、「被積分関数の中に、微分で消したいものがあるとき」は有効かも知れない。
 部分積分は被積分関数のかたっぽを微分できるからね。
 例えば、∫xf(x)dxなんてのは、xを微分したら消えるから部分積分したくなるわけだ。
 ∫xsinxdx=∫x(-cosx)’dx=-xcosx+∫cosxdx=-xconsx+sinx

 これを応用すれば、∫x^n*f(x)dxも部分積分したくなる。nの漸化式であらわせるから。
 また、微分しても変わらないe^xなんてのが絡んでも部分積分使いたくなる。

 ただこれらは僕が思いついた一例であって、
 「普通にやっても解けるけど部分積分すると楽チン」とか
 「部分積分したくなるけど普通にやったほうが簡単」とかいう場合があるかも知れないことを付け加えておく。

830 :大学への名無しさん:04/05/20 23:35 ID:pjoOFdbp
>>828
ぶっちゃけ、ありません。

831 :大学への名無しさん:04/05/21 00:01 ID:jOXKZYIS
以前静岡大の入試問題でグラフを描く問題が出て、
そのグラフが富士山形になったという話を聞いたことがあるのですが、
詳細の書かれたサイトをご存じ有りませんか?

832 :大学への名無しさん:04/05/21 00:16 ID:yBpkj8T2
たしか∫sin^nx dx も部分積分だったな。
In使うやつでこれだけはなぜか理解できたな。
他苦手だけど

833 :大学への名無しさん:04/05/21 00:22 ID:hII7y2Bo
>>819
物理の問題だけど内容は数学の指数計算だってことも分からない能無しか・・・。

834 :ヘタレ:04/05/21 00:24 ID:gQvRfP75
>>833
ここは数学が苦手な人が来るところなのに、なにをいまさら・・・

835 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/21 00:34 ID:UrozHsEo
>>832
積分で数列(漸化式)の絡んでくる奴は部分積分を使って
漸化式を立てるパターンがほとんどだよ。

836 :大学への名無しさん:04/05/21 05:15 ID:IHVoQ5jQ
>>831
解答だけなら
ttp://hiw.oo.kawai-juku.ac.jp/nyushi/honshi/00/answer.cgi/si/math-j?page=3
に載ってるよ。

解答から察するにこんな感じの問題だと思われ。

(1)
f(x)=x^4-x^2+6 (-1≦x≦1)
f(x)=12/(x+1) (x<-1,1<x)
で表された曲線をC1、
g(x)=(cosπx)^2+3 (-2≦x≦2)で表された曲線をC2とするとき、
C1、C2のグラフを同一平面上に描け。

(2)
C1、C2で囲まれる部分の面積を求めよ。

837 :めかじき ◆SWDFishUp2 :04/05/21 06:49 ID:4qqsZcWu
どなたか凸不等式の証明をしてくださいm(__)m

数列wiが wi>0,[i=1→n]Σwi=1で定義され、関数f(x)が上に凸の時

[i=1→n]Σ{wi*f(xi)}≦f([i=1→n]Σwi*xi)

下に凸ならば

[i=1→n]Σ{wi*f(xi)}≧f([i=1→n]Σwi*xi)

って不等式なんですが…

838 :めかじき ◆SWDFishUp2 :04/05/21 06:50 ID:4qqsZcWu
ちょっとあげますね…

839 :大学への名無しさん:04/05/21 07:23 ID:jrBkugSz
>>837
a≦x≦bでf(x)が上に凸とすると曲線f(x)は(a, f(a))と(b, f(b))を
結ぶ直線より上にあるのでa≦c≦bとなるcに対して
{f(a)-f(b)}(c-a)/(a-b)≦f(c) が成り立ちます
よって、n=2のときはこれに放り込んで計算するだけ
あとは帰納的にいけるはず

840 :めかじき ◆SWDFishUp2 :04/05/21 07:27 ID:4qqsZcWu
良く考えると、左辺はn個のf(x)上の点の重心、
右辺はn個のxiの重心に対応するf(x)と捉えれば分かりやすいのかな?

>>839
さんくすです

841 :大学への名無しさん:04/05/21 13:05 ID:InpXkcgX
n! の桁数をNとしたとき、

lim[n→∞] 10^(N/n)/n を求めよ。

よろしくお願いします。

842 :QueenMathematician ◆T7ej6WOXJI :04/05/21 16:52 ID:2qEI+IuH
lim[n→∞] 10^{(N/n)/n}

lim[n→∞] {10^(N/n)}/n

どっち?

843 :大学への名無しさん:04/05/21 17:12 ID:KASYt2uK
下だと思われる。

844 :大学への名無しさん:04/05/21 17:46 ID:enYJiFX4
>>841
n! の桁数がNだから、
n!/10<10^N≦n! が成り立つけど、
これ変形してハサミ撃ちとかじゃない?

845 :大学への名無しさん:04/05/21 19:09 ID:kHYQ3Vlw
質問です

x+yが無理数であることは、xまたはyが無理数であるための十分条件であるが必要条件でない。
このことを証明せよ。


おねがいします。

846 :大学への名無しさん:04/05/21 19:17 ID:2qEI+IuH
>>845
x+yが無理数であることは、xまたはyが無理数であるための必要十分条件ですよ

847 :大学への名無しさん:04/05/21 19:21 ID:glrEZSgu
x+yが無理数であること・・・@ xまたはyが無理数・・・A
@⇒A A≠⇒@を示せばいい

848 :大学への名無しさん:04/05/21 19:26 ID:kHYQ3Vlw
>>847
@⇒Aの証明がわからない。 



849 :大学への名無しさん:04/05/21 19:27 ID:glrEZSgu
A≠⇒@の例x=√2、y=-√2 数学の『または』は日常使う『または』とは
異なるので注意が必要

>>848 対偶法

850 :846:04/05/21 19:33 ID:2qEI+IuH
訂正。

>847の方法で、
x=-√3、y=√3
のとき反例になるね

851 :大学への名無しさん:04/05/21 19:34 ID:kHYQ3Vlw
>>849
じゃあ、有理数+有理数=有理数はどうやって証明するのでしょうか?

852 :大学への名無しさん:04/05/21 19:35 ID:glrEZSgu
>>850 真面目な香具師だな・・・エライ!

853 :大学への名無しさん:04/05/21 19:42 ID:glrEZSgu
明らかでいいと思うがどうかな?。もし証明するんなら有理数は互いに素な整数a,bを用いて
a/bとおけるからこれを用いて示せばいい。

854 :大学への名無しさん:04/05/21 19:43 ID:kHYQ3Vlw
>>853
thx


855 :高一:04/05/21 20:14 ID:PFRHl95S
数Aの確立、場合の数、順列、組み合わせなどの解き方のコツとかってありませんか??

856 :大学への名無しさん:04/05/21 20:17 ID:wULcvY4x
数え方のパターンを覚える

857 :大学への名無しさん:04/05/21 20:38 ID:XkiZorwQ
連続量に関する確率とか包絡線は入試に出るんですか?

858 :大学への名無しさん:04/05/21 20:44 ID:iVDtBRvy
志望校の過去問見て判断

859 :大学への名無しさん:04/05/21 20:47 ID:tG6i5mcc


860 :大学への名無しさん:04/05/21 21:05 ID:xbL0wYfE
>>857
方物線が直線と点との距離が一定の包絡線なんだが・・
ついでに円も直線の包絡線

861 :大学への名無しさん:04/05/21 21:47 ID:ydDa9mTf
確率で出てきたんですが、同様に確からしいってどういうことですか?
青チャ1Aの例題173に出てきました。

それと、拝反、独立の意味がわかりません。
確率計算で足し算が出てきたら拝反書かなきゃダメですか?

862 :大学への名無しさん:04/05/21 21:57 ID:glrEZSgu
>>861 同様に確からしい→同じ程度に期待できることで初めのうちはあんまりこだわらなくても
   いいと思う。


863 :大学への名無しさん:04/05/21 22:01 ID:ydDa9mTf
>>862
ありがとうございます。
納得しました、最初からそうかけばいいのなあ。
確からしいなんてわかりづらひ。

864 :大学への名無しさん:04/05/21 22:02 ID:a3dby1iV
学校の課題なんですが
三角形の三辺の長さが小さい順に等比数列をなすとき、その公比rの満たす条件を求めよ。

お願いします。

865 :大学への名無しさん:04/05/21 22:03 ID:69fqNdhc
>>864
丸投げイクナイ!!

866 :大学への名無しさん:04/05/21 22:07 ID:iVDtBRvy
>>864
最小辺をaとおけば、
残りの2辺の長さはar、ar^2。
あとは「三角形の成立条件」でググれ。

867 :大学への名無しさん:04/05/21 22:07 ID:glrEZSgu
>>864 三角形の成立条件を考えてみれ

868 :大学への名無しさん:04/05/21 22:09 ID:glrEZSgu
>>867 被ってしまった。866氏スマソ

869 :大学への名無しさん:04/05/21 22:20 ID:PJ5R+UKf
四面体ABCDがありAB=2 BC=√7 CA=3 AD=BD=CD=4である。この四面体の体積Xを求めよ

この問題なのですが、まったく進みません。誰かお願いします。

870 :大学への名無しさん:04/05/21 22:24 ID:glrEZSgu
>>869 Dから平面ABCに下ろした垂線の足は三角形ABCの外心と一致するからこれを
   利用してやってみれ

871 :大学への名無しさん:04/05/21 22:29 ID:PJ5R+UKf
返信ありがとうございます。やってみます。

関係ないですが、大学生の方なんですか?

872 :大学への名無しさん:04/05/21 22:37 ID:glrEZSgu
>>871 仮面浪人ってやつです。ちなみに本番では870の証明(三角形ABCの外心をOと
   おくとDOが四面体ABCDの高さであることの証明)をつけないといけません。 

873 :大学への名無しさん:04/05/21 22:40 ID:PJ5R+UKf
>>872
仮面っすか。大変そうですね・・・・ がんばってください!!!
親切にありがとうございました。

874 :大学への名無しさん:04/05/21 22:42 ID:swslpMhF
lim[x→+0]_1/log(x)を求める問題で

lim[x→+0]_log(x)=-∞、∴lim[x→+0]_1/log(x)=0

と解いたら、間違ってると言われたんですが、どこがおかしいんでしょう?

875 :数列:04/05/21 22:54 ID:WIQOFpmM
1^2、-2^2、3^2、-4^2、5^2、……@
@の数列に関して、S2nを求めろとあります。
Snを求めろではなくS2nとあります。
どうすればよいですか?
教えてください。

876 :大学への名無しさん:04/05/21 22:58 ID:ydDa9mTf
>>875
マイナスはどうついてます?二乗の外??

877 :数列:04/05/21 23:05 ID:WIQOFpmM
すいません。
マイナスは二乗の外です。だけど内側だと問題がかなり楽になっちゃいますよw

878 :大学への名無しさん:04/05/21 23:07 ID:kAmP5hnM
S2n = Σ[k=1〜n] (2k-1)^2 - Σ[k=1〜n] (2k)^2 = -n(2n+1)

879 :数列:04/05/21 23:08 ID:WIQOFpmM
Snの答えも-n(2n+1)になりません?

880 :大学への名無しさん:04/05/21 23:08 ID:iVDtBRvy
一般項をanとする。
S2n = a1 + a2 + a3 + a4 + ・・・・・・・・・・・ + a(2n-3) + a(2n-2) + a(2n-1) + a2n
であるが、奇数番号同士、偶数番号同士でそれぞれ規則性があることに気づけば、

= { a1 + a3 + ・・・・・・ + a(2n-3) + a(2n-1) } + { a2 + a4 + ・・・・・・ a(2n-2) + a2n }
=Σ[k=1,n] { a(2n-1) + a(2n) }
=Σ[k=1,n] { (2n-1)^2 - (2n)^2 }

色々な考え方はあるだろうが、こんなところでどうだろうか。

881 :大学への名無しさん:04/05/21 23:09 ID:ydDa9mTf
>>877
ん?外でもあんま変わらなくない?
2n項書き出して階差取って一般項出して和を求めてマイナス付ければオシマイじゃ?

882 :大学への名無しさん:04/05/21 23:10 ID:iVDtBRvy
訂正

>=Σ[k=1,n] { a(2n-1) + a(2n) }
>=Σ[k=1,n] { (2n-1)^2 - (2n)^2 }



=Σ[k=1,n] { a(2k-1) + a(2k) }
=Σ[k=1,n] { (2k-1)^2 - (2k)^2 }

あと重複スマソ。

883 :数列:04/05/21 23:22 ID:WIQOFpmM
2n項てなんですか・・・?

884 :大学への名無しさん:04/05/21 23:26 ID:kAmP5hnM
マルチやめれ。

885 :大学への名無しさん:04/05/21 23:36 ID:ydDa9mTf
ほんとごめん881無視して。
2a項の和と勘違いした。

886 :数列:04/05/21 23:37 ID:WIQOFpmM
>>880
死ね

>>884
すまんw

887 :大学への名無しさん:04/05/21 23:40 ID:iVDtBRvy
?

888 :大学への名無しさん:04/05/21 23:40 ID:s2kPfqRS
>>886
おもろいレスだなw
丁寧と乱暴が同居してる

889 :大学への名無しさん:04/05/21 23:42 ID:WIQOFpmM
オレは>>880->>886のながれを理解できないwww



890 :大学への名無しさん:04/05/21 23:43 ID:WIQOFpmM
>>886=>>889

自作自演

イクナイ

891 :大学への名無しさん:04/05/22 00:07 ID:ANiAJgkm
2x+1/x^2(x+1)を部分分数にする時、
なぜa/x+b/x^2+c/x+1にするのでしょうか?
個人的には、a/x^2+b/x+1にしてしまうのですが・・・。

892 :大学への名無しさん:04/05/22 00:21 ID:r/AbjgXx
a/x^2+b/x+1でやってみたら?やってないでしょ?
人に聞く前にやってみよう

893 :大学への名無しさん:04/05/22 00:27 ID:0fBbBj5H
個人的?ふざけたことを抜かすな。私的な部分を数学にいれるな。
公的な考えで真正面から戦え。

894 :大学への名無しさん:04/05/22 00:40 ID:BAbMInC9
>>886=>>889=>>890
こいつは基地外か?
それとも俺は釣られてるのか?

895 :大学への名無しさん:04/05/22 00:57 ID:BAbMInC9
>>874
あってると思うけどなー

896 :大学への名無しさん:04/05/22 01:29 ID:tgYJ5+7L
高1です。

数Aの順列(P)やら組み合わせ(C)やらがさっぱりだ。
問題を見たときに何に気づけば、もしくは何を考えればいいの?

例えば

女子5人と男子7人、合計12人の内から代表を4人選ぶ。

1)全体から4人を選ぶ方法は何通りあるか。
2)女子から2人、男子から2人選ぶ方法は何通りあるか。
3)最低でも女子から2人選ぶ方法は何通りあるか。

1)と2)は分かるよ。
1)は12C4で495通り・・・? 2)は5C2×7C2、、、だ。多分。
でも3)とかのちと応用させたような問題になってきた時に
何をまず考えればいいのかとかが頭に浮かんでこない。。。
何に意識すればいいの?

897 :大学への名無しさん:04/05/22 01:40 ID:mHR8HaF8
>>896 経験がないだけ。いろいろな問題にあたるうちにカンがついてくるからがんばれ!


898 :大学への名無しさん:04/05/22 02:30 ID:5kBeXo1F
>>896
ここで躓く人はたいてい思考がまず、Pありき、Cありき
になっていることが多いように思う。
そうじゃなくて、この分野で大事なことは
まず、もれなく、また、重複なく数えるにはどうしたら
いいかを考えること。

899 :大学への名無しさん:04/05/22 03:37 ID:+vHERdHj
とりあえず場合を分けなさい

900 :大学への名無しさん:04/05/22 03:49 ID:qTvaRsHA
>>874
間違いっつーか答案として不十分ということなんだろう。
それだけでは何も示してないのと変わらない。
lim[x→+0]_log(x)=-∞となるのは何故かを示さないと。

901 :大学への名無しさん:04/05/22 05:39 ID:IJ2PTdyp
解法の記述問題がどうも苦手 例えば、なになにを示せとか 証明しろとかの問題だと見ただけで手つけられなくなる どうしたらいいでしょう?

902 :大学への名無しさん:04/05/22 06:10 ID:iCMcz09J
>>900
それはグラフから一目瞭然だと思うが。
そんな事は普通説明はいらない。

903 :大学への名無しさん:04/05/22 09:10 ID:qTvaRsHA
>>902
グラフがかけるからlim[x→+0]_log(x)=-∞などとはナンセンスもいいところ。
普通はいらない説明だが、これはまさに必要なケースであろう。
言わば、なぜそういうグラフが書けるのか?という出題なのだから。


904 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/22 09:22 ID:T2CpGoI1
>>901
どうにもならない。


・・・まぁ半分冗談だけど。
問題を解くときにどういうふうに考えていけばいいのか。
8割がたはよくあるパターンに"帰着して"考える。
残り2割はひらめき。
でもひらめきが必要な問題は完答する必要ないから定石をしっかり身に付ける。
っつーことで教科書学習をオススメします。(多分高2か高1でしょ?)
教科書に載ってる問題( 例題やら章末問題やら)は全部暗記しましょう(どれも入試ではよく出る)
その際に先生に聞きまくりなさい。分からないところは。
もちろん丸暗記でなくどういう考えでそういう解答(方針)にいたったかまで考えるんだよ。

905 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/22 09:47 ID:yyKoxoIA
>>904
ごめん。
>教科書に載ってる問題( 例題やら章末問題やら)は全部暗記しましょう(どれも入試ではよく出る)
って書いたけど自分で解けるようになるまで繰り返しましょうってことね。

906 :大学への名無しさん:04/05/22 10:12 ID:jbR3a8U+
>>903
じゃあどうやってlim[x→+0]_log(x)=-∞を証明するのか教えてください。
はさみうちとか微分とか考えてみたけどマジでわからん。


907 :896:04/05/22 11:00 ID:64blOfPh
>>897-899
んー。やっぱり経験不足か。それは当たってるかも。
もっと色々なタイプの問題やって演習積んでけばカンがついてくるってのは同感だよ。
アドバイスサンクス。

908 : :04/05/22 11:23 ID:B44+gllW
∫x^2/(x^2+9)^2dx
がわかりません。よろしくお願いします。

909 :大学への名無しさん:04/05/22 11:30 ID:iCMcz09J
>>903
lim[x→+0]_log(x)=-∞ の知識を問われてるだけの問題だろう。

910 :大学への名無しさん:04/05/22 11:34 ID:2McOpDH7
x=3tanθとおいてみる

911 :大学への名無しさん:04/05/22 11:57 ID:qTvaRsHA
>>909
もしそれだけのことなら>>874のような事態にはならないだろう。

912 :大学への名無しさん:04/05/22 12:31 ID:2McOpDH7
間違ってるって言った人に聞いてみるのが一番

913 :大学への名無しさん:04/05/22 12:47 ID:iCMcz09J
>>911
906の質問には答えないのか?

914 :大学への名無しさん:04/05/22 12:59 ID:2fKTz1UX
この漸化式の一般項の求め方を教えてください。
A1(初項)=4 ,An+1=3An−1


915 :大学への名無しさん:04/05/22 13:18 ID:2McOpDH7
An+1 - 1/2 = 3 ( An - 1/2)

916 :大学への名無しさん:04/05/22 13:23 ID:wcgIP82J
An = (7/2)*3^(n-1) + 1/2

917 :大学への名無しさん:04/05/22 13:39 ID:2fKTz1UX
大変申し訳んしです。
×An+1=3An−1
○An+1=3An−n
でした・・・
ほんとすいません。

918 :大学への名無しさん:04/05/22 13:41 ID:2fKTz1UX
訳んし→訳ない

919 :大学への名無しさん:04/05/22 13:48 ID:9caAsUGK
>>906
lim[t→-∞]e^t=0.
e^tは一対一、増加、値域は正の実数全体だから
lim[e^t→+0]t=-∞.
e^t=xとおくと
lim[x→+0]log x=-∞.

920 :大学への名無しさん:04/05/22 14:12 ID:iCMcz09J
>>919
lim[t→-∞]e^t=0 の証明は?

y=e^x 及び y=log x はお互いに逆関数で、グラフは共に教科書に出ている。
一方の lim[t→-∞]e^t=0 は自明として認めて、
もう一方の lim[x→+0]log x=-∞ は認めないと言うのはおかしくないかい?
二つの式は同じ事を言い換えているに過ぎない。

921 :大学への名無しさん:04/05/22 14:12 ID:mHR8HaF8
>>917 An+1=3An−n⇔[An+1ー(n+1)/2]=3(An−n/2)ー1/2
   あとはBn=An−n/2とおいてやってみれ


922 :大学への名無しさん:04/05/22 14:14 ID:jIHPFGvh
nanisore

923 :大学への名無しさん:04/05/22 14:34 ID:iNMpL7Wo
Z会の問題なんですけど、解説の途中計算がよく分かりません。
(√10)|a|=(√10)|a-1|+2
⇔±(√10)a=(√10)|a-1|+2
となっています。
これでは
|a|=±a
になってしまうのではありませんか?


924 :大学への名無しさん:04/05/22 14:45 ID:mHR8HaF8
>>922 んっ?間違ってる?じゃあ922氏よろしく

925 :大学への名無しさん:04/05/22 14:54 ID:9caAsUGK
>>920
おかしいと思うよ。
lim[t→-∞]e^t=0⇔lim[x→+0]log x=-∞
がわからんから教えてっていっとると解釈したんだよ。

926 :大学への名無しさん:04/05/22 15:21 ID:5llaCqJt
全くわからないので教えてください。
問1.k(nCk)=n(n-1Ck-1) (k=1,2,・・・,n)が成り立つのを証明せよ。
問2.問1を用いて等式nC1+2nC2+3nC3+・・・+nnCn=n*2^n-1を証明せよ。
よろしくお願いします。

927 :大学への名無しさん:04/05/22 15:35 ID:ANiAJgkm
>>892
質問する前にやりましたが、
なぜ/xを入れるのか全く分かりません・・・。

928 :大学への名無しさん:04/05/22 15:42 ID:B5awc6me
>>926
問2のnnCn部分は、n(nCn)?それとも(nn)Cn?

929 :大学への名無しさん:04/05/22 15:47 ID:B5awc6me
n(nCn)みたいだね(自己解決)

930 :大学への名無しさん:04/05/22 16:07 ID:5llaCqJt
>>928
すみません。n(nCn)です。

931 :大学への名無しさん:04/05/22 16:11 ID:UweBfq8d
3つの実数a、b、cがこの順序で等差数列になり、b、c、aの順序で等比数列となるとき、a、b、cの積が125になるa、b、c求めよ。

a、b、cがこの順序で等差数列だから2b=a+c
b、c、aの順序で等比数列だからb^2=ac とおいてやればできるのですが、
a、b、cがこの順序で等差数列だからa-d、a、a+d(d=交差)
b、c、aの順序で等比数列だからa、ar、ar^2(r=公比)とおいて解こうと思っても解けません。お願いします。。

932 :大学への名無しさん:04/05/22 16:14 ID:B5awc6me
>>930
問1、nCk=n!/(k!(n-k)!)=n!/(k*(k-1)!(n-k)!)  醜いけど、中括弧使うのはやめとく
k(nCn)=n!/((k-1)!(n-k)!)=n*(n-1)!/((k-1)!(n-k)!)=n(n-1Ck-1)
最後の所は、nCk=n!/(k!(n-k)!)のn,kを(n-1)!/((k-1)!((n-1)-(k-1))!)にしただけ。

問2、左辺はk(nCk)にk=1からnまで代入した和だから、問1の式を用いて
n(n-1C0)+n(n-1C1)+n(n-1C2)+…+n(n-1Cn-1)
これをnでくくって、(1+1)^n-1=n-1C0+n-1C1+…+n-1Cn-1を使うとn*2^n-1と成る。

醜い&わかりにくくてゴメソ!

933 :大学への名無しさん:04/05/22 16:42 ID:vbZnzH+1
公差をd、公比をrとすると、b=a+d、c=b+d より、a+c=2b ‥‥ (1)
c=br、a=cr より、ab=c^2 ‥‥ (2) またabc=125 だから(2)より、c^3=125 ⇔ c=5
(1),(2) より、a=5, -10
よって、a=b=c=5 (d=0, r=1の場合)、 a=-10, b=-5/2, c=5 (d=15/2, r=-2の場合)

934 :大学への名無しさん:04/05/22 16:43 ID:B5awc6me
ついでに連続カキコだが
>>931
>b、c、aの順序で等比数列だからb^2=ac とおいてやればできるのですが

a,b,cやc,b,aならそれでできるけど…。この問題では(ry
abc=125(c≠0)→ab=125/c、と遠回りに方針を言ってみる。

935 :大学への名無しさん:04/05/22 16:45 ID:B5awc6me
かぶったので逝ってきます…。

936 :大学への名無しさん:04/05/22 17:21 ID:5llaCqJt
>>932
(1+1)^n-1=n-1C0+n-1C1+…+n-1Cn-1
の(1+1)^n-1というのはどのように出すのでしょうか。

937 :大学への名無しさん:04/05/22 18:03 ID:B5awc6me
>>936
二項定理を使った!(旧課程数Aの数列の範囲)
(x+1)^k=kC0*x^k+kC1*x^(k-1)+kC2*x^(k-2)+…+kCk*x^0
x=1、k=n-1にすると(1+1)^n-1=2^n-1=n-1C0+n-1C1+…+n-1Cn-1


938 :大学への名無しさん:04/05/22 18:10 ID:XGZgbNa4
y=x^2+a*sin(x)+cos(x)が変曲点を持つのはaがどんな値のときか?
答)a<-1.73、1.73<a
のやり方が分かりません。

939 :大学への名無しさん:04/05/22 18:19 ID:5llaCqJt
>>937
よくわかりました。
ありがとう

940 :大学への名無しさん:04/05/22 18:21 ID:0bGT/77e
確認なのですが「ベクトルOAの大きさ」は「線分OAの長さ」と言い換えられますよね?



941 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/22 18:21 ID:L1aHtOt+
>>938
変曲点の定義はわかる?

942 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/22 18:22 ID:L1aHtOt+
>>940
うん。OA=l↑OAlですな。

943 :大学への名無しさん:04/05/22 18:25 ID:B5awc6me
>>939
こちらこそ言葉足らずで

944 :大学への名無しさん:04/05/22 18:38 ID:ANiAJgkm
どうやっても自己解決できません。
どなたか891お願いします。

945 :940:04/05/22 18:39 ID:0bGT/77e
>>942 ぅぱぁああ(*´∀`*)ああぁ!!! ありがとう。前からいるコテですか?

946 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/22 18:46 ID:2Yjzcw3O
>>945
どういたしまして。
最近沸いて出ました。
他の回答者に比べて数学の力が無いので当てにしない方が吉なコテです(ワラ

947 :大学への名無しさん:04/05/22 18:52 ID:7Y73FU8V
>>937
二項定理ってまだ数学Aでやってるみたいだけど。

948 :黒豹似の動物に咬まれた浪人 ◆D/9N.BRAVE :04/05/22 18:53 ID:2Yjzcw3O
>>944
>>892は読んだ?

949 :負け組。 ◆Yq7K3Z4nCs :04/05/22 22:33 ID:xWPHk0t8
鯖移転記念(ry

950 :大学への名無しさん:04/05/22 23:29 ID:G54/yfJJ
>>923
> Z会の問題なんですけど、解説の途中計算がよく分かりません。
> (√10)|a|=(√10)|a-1|+2

これを解いてaの値を求めるんだったら、
a<0
0=<a<1
1=<a
に場合分けしたほうが確実なような。
ひとつめとみっつめは解なしになるし。

951 :大学への名無しさん:04/05/23 00:07 ID:zWXsU/EU
予備校とか大数とかで、普通、青チャとかに載ってないような解法が
あるじゃないですか。ああいうのって知っておかないとだめですか?
チェビシェフの不等式とか包絡線とか。

952 :大学への名無しさん:04/05/23 00:11 ID:RiF6lB4b
>>951
受かるだけなら知らなくてもいいのでは?と思います。
へたにうろ覚えするのも危険かと。

953 :大学への名無しさん:04/05/23 00:15 ID:J2w0Suzz
そのあたりなら実戦演習に載ってるレベルの問題ですよ

954 :大学への名無しさん:04/05/23 01:05 ID:5/LmntqH
>>891はスルーされるほど悪い質問じゃないとおもうけど・・・。
彼はその問題の解法だけで無くもっと本質的なところを聞きたかったのだろうと推測。
俺の説明でよければどうぞ。

a/(x^2)+b/(x+1)を通分してみよう。
分子=a(x+1)+bx^2=bx^2+ax+a
この分子は一次の係数と定数項が等しいような特殊な2次式しか表せない。
実際もとの分子2x+1と比較してb=0, a=2, a=1となり解なし。
比較するべき係数が3箇所あるのに未知数を2つしか置かないところが敗因。

a/(x^2)+b/x+c/(x+1)を通分してみよう。
分子=a(x+1)+bx(x+1)+cx^2=(b+c)x^2+(a+b)x+a
この分子は任意の2次式を表すことができる。
もとの分子2x+1と比較してb+c=0, a+b=2, a=1 ∴a=1, b=1, c=-1
未知数を3つ置いたからうまくいった。

一般に分母がn次式の場合,分子は(n-1)次式になる。比較するべき係数はn箇所ある。
だから未知数をn個使って部分分数に分解しなければいけない。
例えば(x^3+x-1)/x^3(x^2+1) (分母は5次式)なら
未知数を5つ使って a/x+b/(x^2)+c/(x^3)+(dx+e)/(x^2+1)と分解する。
分子が3次式と思ってはイケナイ。4次の係数が0である4次式なのだよ。

余談だが,(2x+1)/x^2(x+1)=a/x^2+(bx+c)/x(x+1)と分解することも可能。
でも多分これは積分の問題だよね。積分できない形に分解しても意味無いもんね。

955 :大学への名無しさん:04/05/23 01:28 ID:FPTLjZIc
891をスルーするつもりは無かったんだが、書き込めなかった…。ゴメソ

956 :大学への名無しさん:04/05/23 02:38 ID:STHI6m2G
tan(90°+θ)=-1/tanθ
っていうのが、なぜ
そうなるかいまいち理解できないんですが、どうやって導けば良いんでしょうか?
教科書の図形で、調べても???でした。

957 :956:04/05/23 02:41 ID:STHI6m2G
↑図形じゃなくて、正しくは3角関数のグラフですね

958 :大学への名無しさん:04/05/23 03:02 ID:ztKm5nvi
>>956
tanθを90°ずらしたグラフ見たら一応それっぽく感じない?
tanθが発散するときtan(90°+θ)は0になってるし

まぁ導き方は
tan(90°+θ)={sin(90°+θ)}/{cos(90°+θ)}
を使えばいいよ。後は分かるよね



959 :大学への名無しさん:04/05/23 03:04 ID:v5X11zkk
∫[0,x] |cos(t)| dt って計算できますかねー。
f(x) = ∫[0,x] |cos(t)| dt とおいて、f'(x) = |cos(x)|に注意してy=f(x)のグラフ書いてみたところ、

f(x)=2[ x/π ] + sin { x - π[ x/π ] } ( 0 ≦ t - π[ x/π ]≦ π/2)、
2[ x/π ] + 2 - sin { x - π[ x/π ] } ( π/2 ≦ t - π[ x/π ]≦ π) (ただしこの式において[ ]はガウス記号)

になるような気がするんですけど。

960 :大学への名無しさん:04/05/23 10:10 ID:HJl6ZRtt
数I白チャートをやっています。
この問題、答えはあるのですが途中が分からないので解説お願いします。

問題:x≧0, y≧0, x+y=2 のとき、x^2+y^2 の最大値と最小値を求めよ

答え:
x+y=2 から y=2-x …… (1)
y≧0 であるから 2-x≧0
よって x≦2

x≧0 との共通範囲をとって 0≦x≦2 …… (2)

(1)を x^2+y^2 に代入すると
x^2+y^2 = x^2+(2-x)^2 = 2(x-1)^2+2

(2)の範囲において、x^2+y^2 は x=0,2 のとき最大値4をとり、
x=2 のとき最小値2をとる。
~~~~~~~~~~~~~~~~~~~~~~~~
ここで、(1)から x=0 のとき y=2, x=1 のとき y=1
x=2 のとき y=0

よって、(x,y) = (0,2) , (2,0)のとき 最大値4
(x.y) = (1,1) のとき最小値2


線を引いたところ、x=0,2のときに最大値4なのに、x=2のときに最小値2。
これがわかりません。
どなたか、解説をお願いします。

961 ::04/05/23 10:41 ID:FPTLjZIc
波線部は、x=1のとき最小値2をとるの間違いでは?
次の行でx=1のときy=1って書いてますし。

この問題は、まずx-y平面上にy=2-xのグラフを描いて、原点を中心とする円の半径を
考えることで簡単に解けますよ!

962 :大学への名無しさん:04/05/23 13:44 ID:ySpEVvRt
ベクトルの内積の意味って何でしょうか?同じ方向のベクトルの大きさの積
と思ってるのですが、同じ向きの2つの長さをかけたからってなんだって
話です。

963 :大学への名無しさん:04/05/23 13:47 ID:pOOp11Ov
>>962
自分もずっと気になってた。
でも、考えたくなくて見てみぬふりをしてた、今までは。

964 :960:04/05/23 13:49 ID:/K7GZsgQ
>>961
やっぱり誤植ですか?
10分くらい考えて分からなかったので質問してみました。
ありがとうございました。

965 :大学への名無しさん:04/05/23 13:57 ID:fpvSpiSD
>>962
相手が単位ベクトルなら正射影


京大の2002年数学問1について尋ねたいのだが、よいか?

966 :大学への名無しさん:04/05/23 14:26 ID:d8Lw7WJp
>>962
漏れは、ベクトルの絶対値の冪乗計算において代数的な計算ができるように
定義されたものだと勝手に解釈している。

例えば a・b=(|a|^2+|b|^2−|a−b|^2)/2 で定義すると内積の公理を満たすと思う。
(a,b はベクトルを表す)


967 : ◆ZFABCDEYl. :04/05/23 15:18 ID:+pBKL1Eh
>>841
多分,答はe^(-1)になると思います。こんな流れで。

(1)まず桁数ネタだから,>>844さんの不等式を書きますよね?
それで,これを強引に f(n)<{10^(N/n)}/n<g(n) の形に変形します。

(2)どうせはさみうちが使えるようになっていて,lim[n→∞]f(n)=lim[n→∞]g(n)=ある実数値
となっているはずだから,簡単なlim[n→∞]g(n)を求めてみよう。
それにはまずlogを取って,lim[n→∞]log{g(n)} を求めるしかない罠。
計算すると,log{g(n)}=(logn! / n) - logn。logn!は,logn!=Σ[k=1,n]logk だから,
区分求積の公式『lim[n→∞](1/n)Σ[k=1,n]f(k/n)=∫[0,1]f(x)dx』が絶対使えるはず。
式の形からして,この公式において,f(x)=logxとすれば良さげ。
つまり,(1/n)Σ[k=1,n]log(k/n)を計算すれば,log{g(n)}に結びつくはず。実際,
(1/n)Σ[k=1,n]log(k/n)=(1/n)Σ[k=1,n]{(logk)-(logn)}={(1/n)Σ[k=1,n](logk)}-logn
=(1/n)logn!-(logn)=log{g(n)} となっていた罠。。やっぱり。
あとは広義積分になっちゃうけど,∫[0,1]logxdxを計算する。
∫[0,1]logxdx=-1-lim[x→+0](xlogx) であり,
logx=-t とでも置けば,lim[x→+0](xlogx)=-lim[t→∞]{t/(e^t)}=0 だから,∫[0,1]logxdx=-1.
よって,lim[n→∞]log{g(n)}=-1 だから,g(n)→e^(-1) (n→∞)
おそらく,同じ感じでやれば,f(n)もe^(-1)に収束するべ。(´Д`;)
だから,答はe^(-1)だと予想しますた。

968 :962:04/05/23 15:39 ID:ySpEVvRt
僕の質問に答えてくれた人は高校生ですか?レベルが大学生のような気もしますが。
とりあえず、高校レベルでは自己解釈で差し支えないですよね?今後自分の
その先入観にとらわれないようにすれば。今は専門書あされるほどの余裕はないので。

969 :962:04/05/23 15:40 ID:ySpEVvRt
>>963 これからは自分を変えるということですか?

970 :大学への名無しさん:04/05/23 16:00 ID:fpvSpiSD
>>962
入試では内積の公理までは必要ないと思う。
2次元・3次元での計算と図形的解釈ができれば問題ない。

n次元まで拡張する場合には公理が必要だが、
それは大学1年の線形代数で最初に出てくるから楽しみにしていれば良いのでは?

971 :908:04/05/23 16:02 ID:NQjvdRly
>>910
x=3tanθとおいて試してみたんですが、答えが合いませんでした。
ご迷惑かもしれませんが、解法(式の流れ)を書いてみていただけないでしょうか?
一応、答えは1/2(-x/(x^2+9)+1/3tan(-1)x/3)です。
(tan(-1)=アークタンジェント)
よろしくお願いします。

972 :大学への名無しさん:04/05/23 16:07 ID:IVBz7iki
x^2-xy-2y^2+ax-y+1
が一次式の積に因数分解されるように定数aの値を定めよ

とあるのですが,どうしてここで判別式を必要とするのか分かりません
どなたか教えて下さい

973 :大学への名無しさん:04/05/23 16:09 ID:oXrGLVwA
>>908
俺は910ではないが。
ってか高校の範囲超えてんじゃん。

x=3tanθとするとdx=3/(cosθ)^2 、θ=Arctan(x/3)は問題ないな?
んで与式に代入して整理すると1/3∫(cosθtanθ)^2 dθ
って感じになるだろう。
あとは(tanθ)^2を(cosθ)^2-1に変形すればいけるんでね?

974 :大学への名無しさん:04/05/23 16:12 ID:fpvSpiSD
>>972
D=0じゃないとルートが外せないから

975 :大学への名無しさん:04/05/23 16:20 ID:ztKm5nvi
>>962
なんで内積なんかがあるのか?っていう疑問だよね
たしか元々は物理の仕事を表すものとして考えられたんだったと思う。
物理学では数式を用いることによって現象、法則を単純化して見せるようにしているけど、
その使われている手法(内積や外積など)を数学にもとりこんで利用しようって感じじゃないかなぁ。
大学で物理を勉強したらその美しさというか簡潔さ、便利さのようなものが分かると思う

じゃあ数学ではどう使われるのかとなると、自分は詳しくないから答えられないけど
大学の線形代数でそれに関係するようなこと(内積空間?とか)を学べると思う。

まぁ高校のうちはあまり気にしなくていいんじゃない?

976 :大学への名無しさん:04/05/23 16:46 ID:oXrGLVwA
内積に関しては教える側も微妙に避けて通ってるしね。

977 ::04/05/23 17:08 ID:FPTLjZIc
>>965
よいぞw(答えられないが)

>>908
似たような問題で自分も悩みマスタ。
x=3tanθからθ=tan^(-1)x/3が導けないんですよ・・・。
誰か解説していただけませんか?

978 ::04/05/23 17:24 ID:FPTLjZIc
また自己解決!よく考えてから書き込まないといけませんね・・・。

f(x)とその逆関数f^(-1)(x)について、b=f(a)とするとa=f^(-1)(b)でしたね。
だから、x/3=tanθとするとθ=tan^(-1)x/3

979 :大学への名無しさん:04/05/23 17:28 ID:IVBz7iki
すいません、972ですが、解答がイマイチ分かりません。
順を追って説明していただけませんか?

980 :大学への名無しさん:04/05/23 17:52 ID:oXrGLVwA
そろそろ次スレ立てたほうが良くね?

981 :大学への名無しさん:04/05/23 18:00 ID:ThSaz1CF
>>979
判別式の判別式が0

982 :大学への名無しさん:04/05/23 18:14 ID:8mU8V7mx
x^2-xy-2y^2+ax-y+1
が一次式の積に因数分解されるように定数aの値を定めよ

 一次式ってのは多分xについてもyについても一次式なんだろう。
(1) (x+○)*(y+△)の形に因数分解できる(○、△は定数項。x、yの係数は省略)
(2) (x+y+○)*(x+y+△)の形に因数分解できる 
 のどっちかなんだけど、x^2とかy^2があるってことは後者なんだろう。

 この手の因数分解問題の定跡は、「次数の低い奴を変数と見なす、整理する」だけど
 xもyも二次だから、どっちを変数としてみてもいい。解答は恐らくxについて整理してるだろうから
 アマノジャクしてyについてやってみる。整理すれば
 x^2-xy-2y^2+ax-y+1=-2y^2-(x+1)y+x^2+ax+1
 これが実数の範囲で因数分解できる。強引にyについて解けば
 y=[(x+1)士√{(x+1)^2+8(x^2+ax+1)}]ごちゃごちゃごちゃ(略
 になるんだけど、因数分解ってことは√入っちゃダメだろうから、この√の中身は
 何かの2乗になって消えてくれるはず。ルート内を展開して
 (x^2+2x+1)+(8x^2+8ax+8)=9x^2+2(4a+1)x+9=(○x+△)^2
 これはもう(3x士3)^2になるしかないので 2(4a+1)=士18 4a=8、-10
 a=2、-5/2
【a=2のとき】
x^2-xy-2y^2+ax-y+1=x^2-xy-2y^2+2x-y+1=-2y^2-(x+1)y+x^2+2x+1
 =-2y^2-(x+1)y+(x+1)^2  たすきがけして
 =(-2y+x+1)(y+x+1)  確かに一次式の積に分解できた。
【a=-5/2のとき】
 x^2-xy-2y^2+ax-y+1=x^2-xy-2y^2-5/2x-y+1
 =-2y^2-(x+1)y+1/2(2x-1)(x-2)  んでまた頑張ってたすきがけして
 =(-2y+1/2(2x-1))(y+x-2)  確かに一次式の積にできた。

 「どこでDが・・・?」って質問だったけど、上みたいに1から考えりゃ分かることじゃないかな。

983 :大学への名無しさん:04/05/23 18:29 ID:ThSaz1CF
>>982
(○x+△y+□)*(●x+▲y+■)の一つだけでよい
(1)はこれに含まれる

984 :982:04/05/23 18:35 ID:8mU8V7mx
>>983当たり前じゃん・・・
そうすると分かりにくくなるのが分からない?
抽象化して全体を一気に片付けるのは簡単だけれど、具体的なほうが分かりやすいのも確か。

985 :大学への名無しさん:04/05/23 18:47 ID:RHowfgHC
y=x^2(0≦x≦1)の長さLが求められません。
置換すると酷い目にあった。もしかして部分積分?

986 :982:04/05/23 19:11 ID:8mU8V7mx
>>985
 ごめんちょっと高校の範囲忘れたんだけど、
 ∫√(x^2-1)dx って積分できる?双曲線関数って習うっけ。

987 :大学への名無しさん:04/05/23 19:15 ID:RiF6lB4b
>>986
x=t+1/t とおきかえればできる。

988 :大学への名無しさん:04/05/23 19:17 ID:oXrGLVwA
>>985
y=x^2は相当レベル高いぞ。
今からやってみる。
どこの問題だ?

989 :982:04/05/23 19:20 ID:8mU8V7mx
>>987
 双曲線関数知らないのにその置換は分かるの・・・?

990 :大学への名無しさん:04/05/23 19:26 ID:RiF6lB4b
>>989
ノーヒントじゃつらいと思いますよ。
x=exp(t)+exp(-t)の置換とか、知らなきゃ無理でしょう。

991 :大学への名無しさん:04/05/23 19:26 ID:oXrGLVwA
>>985
とにかく∫√(x^2 +1/4)dxが計算できればいいのはわかるな?
t=x+√(x^2 +1/4)と置けばいける。

答えが(1/4)・(x√(x^2 +1/4) +(1/4)log|x+√x^2 +1/4|)
だと思う…

992 ::04/05/23 19:27 ID:FPTLjZIc
x+√(x^2+(1/2)^2)=tと置いてしまった…。

993 :大学への名無しさん:04/05/23 19:39 ID:8mU8V7mx
 L=∫√(1+4x^2)dxにおいて、4x^2=tと置換すれば
 =1/2∫√(t^2+t)dt (t=0〜4) 平方を作って、
 =1/2∫√{(t+1/2)^2-1/4}dt  ここでt+1/2=(e^x+e^(-x))/4と置く。読みづらいので分子をHと置くことにすれば
 するとdt=(exp(x)-exp(-x))/4dx t=0〜4なので x=0〜log(2+√5)
 ここで、a=log(2+√5)は e^a+e^(-a)=4を満たすことに留意すること。
 L=1/32∫(exp(x)-exp(-x))^2dx (x=0〜a)
 =1/32[1/2(exp(2x)-exp(-2x))−2x]
 exp(2x)-exp(-2x)=(exp(x)-exp(-x))(exp(x)+exp(-x))=4{exp(x)+exp(-x)}
 exp(x)=2+√5だったので、exp(x)+exp(-x)=2√5
 L=1/32(4√5−2loga)=√5/8−{log(2+√5)}/16

 おいおいおいおい!!計算自信なし。

994 :982=993:04/05/23 19:40 ID:8mU8V7mx
 あ、ごめん、 分子=Hって奴いらん。抜かして。

995 :大学への名無しさん:04/05/23 19:43 ID:RiF6lB4b
次スレ
数学の質問スレ【大学受験版】part31
http://school3.2ch.net/test/read.cgi/kouri/1085308650/

996 :大学への名無しさん:04/05/23 20:42 ID:ztKm5nvi
真正面から攻めるのは991に書かれている方法かな
答えは(1/2)(x・・・)だと思うけど。
それに1と0を代入して、最終的に
√5/2−{log(1+√5/2)}/4
が出てくる

997 :996:04/05/23 20:55 ID:ztKm5nvi
あ、求めたのは∫√(x^2 +1/4)dxの原始関数だから
それに2をかけた∫√(4x^2 +1)dxの答えがさっきのやつです

998 :985:04/05/23 20:56 ID:RHowfgHC
2x=tanθの置換じゃない事に驚きました。
一度この手の問題に触れてないとカテナリー?っぽい置換は思いつかないですね。
2x={e^t-e^(-t)}/2と置換すると1/8∫[0→2+√5]{e^x+e^(-1)}^2dtとなって、
なんとかL=1/4(2√5 + log[2+√5])が出せました。
みなさん有難うございました。この置換法は勉強身なりました。m(_ _)m

999 :大学への名無しさん:04/05/23 21:08 ID:nxxKed+f
1000

1000 :大学への名無しさん:04/05/23 21:08 ID:nxxKed+f
sen

1001 :1001:Over 1000 Thread
このスレッドは1000を超えました。
もう書けないので、新しいスレッドを立ててくださいです。。。

257 KB
★スマホ版★ 掲示板に戻る 全部 前100 次100 最新50

read.cgi ver 05.04.00 2017/10/04 Walang Kapalit ★
FOX ★ DSO(Dynamic Shared Object)