5ちゃんねる ★スマホ版★ ■掲示板に戻る■ 全部 1- 最新50  

■ このスレッドは過去ログ倉庫に格納されています

「*大」「数学」「根負け」ver.15.0

1 :weapon ◆RRlBLdA0dk :04/05/14 04:15 ID:aMInGCMh
詳細は>>2以降で。
基本的には、数学の問題を出し合ったりして受験数学を研究するスレです。


2 :weapon ◆RRlBLdA0dk :04/05/14 04:18 ID:aMInGCMh
↓過去の系譜

「東大」「才能」「数学」
ttp://school2.2ch.net/test/read.cgi/kouri/1061202039/
「東大」「才能」「全教科」ver2.0
ttp://school2.2ch.net/test/read.cgi/kouri/1061993330/
「東大」「努力」「全教科」ver3.0
ttp://school2.2ch.net/test/read.cgi/kouri/1063602221/
東大理類数学ver3.5
ttp://park6.wakwak.com/~sarumaru/cgi-bin/readres.cgi?bo=gakusei&vi=1063620558
「東大」「才能」「英数理」ver4.0
ttp://school2.2ch.net/test/read.cgi/kouri/1064182110/
「東大」「努力」「英数物」ver5.02
ttp://school2.2ch.net/test/read.cgi/kouri/1065447524/
「東大」「努力」「数学」ver6.0
ttp://school2.2ch.net/test/read.cgi/kouri/1066974244
「東大」「努力」「実践力」ver7.0
ttp://school2.2ch.net/test/read.cgi/kouri/1068123195/
「東大」「理類」「数学」ver7.52
ttp://park6.wakwak.com/~sarumaru/cgi-bin/readres.cgi?bo=gakusei&vi=1069257837
「東大」「暗記」「数学」ver8.00
ttp://school2.2ch.net/test/read.cgi/kouri/1070067813/


3 :weapon ◆RRlBLdA0dk :04/05/14 04:19 ID:aMInGCMh
「東大」「年越し」「数学」ver9.0
ttp://school2.2ch.net/test/read.cgi/kouri/1071155171/
「東大」「新年」「数学」ver10.0
ttp://school2.2ch.net/test/read.cgi/kouri/1072261525/
「東大」「全完」「数学」ver11.0
ttp://school2.2ch.net/test/read.cgi/kouri/1074863282/
「東大」「根性」「数学」ver12.0
ttp://school2.2ch.net/test/read.cgi/kouri/1075910968/
「東大」「突撃」「合格」ver[5e]
http://school2.2ch.net/test/read.cgi/kouri/1077373150



4 :weapon ◆RRlBLdA0dk :04/05/14 04:23 ID:aMInGCMh
前スレ
「東大」「数学」「代替り」ver[10√2]
http://school2.2ch.net/test/read.cgi/kouri/1080207398/l50

5 :weapon ◆RRlBLdA0dk :04/05/14 04:25 ID:aMInGCMh
伝説の受験生9の掲示板。こちらもよろしく。

9−man数学研究所
http://jbbs.shitaraba.com/study/4125/


6 :weapon ◆RRlBLdA0dk :04/05/14 04:26 ID:aMInGCMh
過去ログのhtml版はこれです。

「東大」「才能」「数学」
http://ruku.qp.tc/dat2ch/0403/12/1061202039.html
「東大」「才能」「全教科」ver2.0
http://ruku.qp.tc/dat2ch/0403/12/1061993330.html
「東大」「努力」「全教科」ver3.0
http://ruku.qp.tc/dat2ch/0403/12/1063602221.html
「東大」「才能」「英数理」ver4.0
http://ruku.qp.tc/dat2ch/0403/12/1064182110.html
「東大」「努力」「英数物」ver5.02
http://ruku.qp.tc/dat2ch/0403/12/1065447524.html
「東大」「努力」「数学」ver6.0
http://ruku.qp.tc/dat2ch/0311/30/1066974244.html
「東大」「努力」「実践力」ver7.0
http://ruku.qp.tc/dat2ch/0403/12/1068123195.html
「東大」「暗記」「数学」ver8.00
http://ruku.qp.tc/dat2ch/0403/12/1070067813.html
「東大」「年越し」「数学」ver9.0
http://ruku.qp.tc/dat2ch/0403/12/1071155171.html
「東大」「新年」「数学」ver10.0
http://ruku.qp.tc/dat2ch/0403/12/1072261525.html


7 :quindecim(☆5) ◆QRDTxrDxh6 :04/05/14 04:49 ID:FK3V1tLn
乙!

8 :大学への名無しさん:04/05/14 04:54 ID:2OZx6S81
あーーあ・・荒らしの思い通りになっちゃった
お前らはテロに屈したわけだよ?足元見られてさらに変な要求されんぞ

9 :○○社:04/05/14 04:56 ID:HrlISZc1
なんだよそれw

10 :大学への名無しさん:04/05/14 04:57 ID:2OZx6S81
>9
前スレの最後の方見れば分かる

11 :○○社:04/05/14 05:01 ID:HrlISZc1
東大ヲタクのキモDQN太郎生の前に屈したのか。


>>1
逝っていいぞ

12 :名無し募集中。。。:04/05/14 16:08 ID:jNuOm52e
前々スレ、前スレの[5e]、[10√2]の意味が今ようやくわかった俺が来ましたよ
てっことは今回は[5π]じゃないかと、正直>>1にどっかの大学名入れなかったことより気になった
最近はバイトで添削をしていたのだが一言、添削なんだから白紙はないだろ、俺に何添削しろって言うんだ

前スレ
>>828
[1]y軸方向に1/2倍して考える。∠AOB=2θ(0<θ<π)とし、直線OCと線分AB、円Eの交点をM、Dとする。
CA=CBよりDが三角形ABCの重心と一致するとき題意を満たす。
このときOM=cosθ、OD=1、OC=1/cosθからCD=(1/cosθ)-1、DM=1-cosθ。
またDは三角形ABCの重心からCD=2DM⇔(1/cosθ)-1=2*(1-cosθ)⇔(2cosθ-1)(cosθ-1)=0 ∴cosθ=1/2
従ってOC=2よりCは原点を中心とする半径2の円周を動く。再びy軸方向に2倍して4x^2+y^2=16

[2]上手な解法はもう示されてるみたいなので、下手でも地道なものを

y,zを固定してf(x)=√{x^2+(y-1)^2}+√{y^2+(z-1)^2}+√{z^2+(x-1)^2}を考える。
f'(x)=x/√{x^2+(y-1)^2} +(x-1)/√{z^2+(x-1)^2} … (#)
x≦0 f'(x)<0、x≧1でf'(x)>0より0<x<1で考えれば十分。同様に0<y<1、0<z<1で考えれば十分。
よって以下0<x,y,z<1とする。
(#)⇔f'(x)=x/√{x^2+(1-y)^2} - (1-x)/√{z^2+(1-x)^2} 、0<x,y,z<1よりf'(x)の正負を調べるには
{x^2+(y-1)^2}/x^2、{z^2+(1-x)^2}/(1-x)^2の大小⇔(y-1)/x、z/(1-x)の大小を調べればよく、これから
0<x<(1-y)/(1-y+z)のときf'(x)<0
x=(1-y)/(1-y+z)のときf'(x)=0
(1-y)/(1-y+z)<x<1のときf'(x)>0
これよりx=(1-y)/(1-y+z)⇔zx-xy=1-x-y …@のとき最小、同様にx,zやx,yを固定するとxy-yz=1-y-z …A、yz-zx=1-z-x …Bのとき最小となる。
@、A、Bを解くとx=y=z=1/2、よってこのとき最小値をとり3/√2となる

13 :名無し募集中。。。:04/05/14 16:12 ID:jNuOm52e
↑瞬時に間違い発見
>(y-1)/x、z/(1-x)の大小を調べればよく、
(1-y)/x、z/(1-x)の大小を調べればよく、
に訂正

さて今から小旅行に行ってきます

14 :大学への名無しさん:04/05/14 16:51 ID:jNwnjjXD
あんたモーヲタ?

15 :大学への名無しさん:04/05/14 17:34 ID:KHVhgY6w
あそこまで荒らされて東大付けるほうが馬鹿だと思うが。
東大つけたらまたやられるのは明らかじゃん。
東大付けなきゃいけない意味も特にないし。

16 :大学への名無しさん:04/05/14 17:34 ID:hQ8rBnmi
ここ、なんでこんな志の低いスレタイになってんの?
前スレになんかあったの?

17 :大学への名無しさん:04/05/14 17:37 ID:jNwnjjXD
どう考えても付けない方が馬鹿

18 :大学への名無しさん:04/05/14 17:45 ID:hQ8rBnmi
前スレ読めたわ
たぶん他の東大目指すぞ系のスレにもレスしてる奴だろうな
理一落ちの残念な奴だ


19 :quindecim(☆5) ◆QRDTxrDxh6 :04/05/14 18:10 ID:FK3V1tLn
>>17
スレたってから「束大」っての思いついたんですがね。

20 :weapon ◆RRlBLdA0dk :04/05/14 20:06 ID:ifU9Z4eI
>>14
(´・∀・`)ヘー
そういうことだったのか

21 :quindecim(☆5) ◆QRDTxrDxh6 :04/05/14 20:08 ID:FK3V1tLn
>>20


22 :weapon ◆RRlBLdA0dk :04/05/14 20:25 ID:ifU9Z4eI
>>21
モ娘板の名無しは"名無し募集中。。。"みたいですよ
名無し募集中。。。氏はどっかの板の住人ですっていってましたから、
ああそうなのかと。


23 :quindecim(☆5) ◆QRDTxrDxh6 :04/05/14 20:32 ID:FK3V1tLn
>>22
はあ。行ったことないからわからんかったです。
ひさびさのage.

24 :weapon ◆RRlBLdA0dk :04/05/14 20:38 ID:ifU9Z4eI
俺もよくわからんです。

今回のHNはどういう意味ですか?

25 :安藤真幌 ◆V1046RczEA :04/05/14 21:42 ID:5yNu9Lgr
前スレ>>851
[1]について、まぁ数え上げたらええんやけどなぁw
詳しい解答は大学への数学マスターオブ場合の数の第4部参照。
[2]について、かけまくったのかwww
26334=C[22,5]ですが意味は考えてみてください。

26 :大学への名無しさん:04/05/14 22:19 ID:hQ8rBnmi
どっかのスレに東大学ってのもあったな

27 :臺地 ◆6rqpPuO9q2 :04/05/14 22:25 ID:vhRIp0/4
やっとたどり着いた・・・・
一旦落ち

28 :quindecim(☆5) ◆QRDTxrDxh6 :04/05/14 22:25 ID:FK3V1tLn
>>24
単純にラテン語の十五です。

29 :臺地 ◆6rqpPuO9q2 :04/05/14 22:31 ID:vhRIp0/4
ああその前に。

>>1
乙カレー。。

30 :大学への名無しさん:04/05/14 22:34 ID:1JgrifSk
 sinすれおめ

31 :◆tESpxcWT76 :04/05/14 22:37 ID:jeC2gMz0
>>1
乙です。

32 :weapon ◆RRlBLdA0dk :04/05/14 22:49 ID:ifU9Z4eI
あのー
前スレの荒らしについて、通報したんですが
http://qb3.2ch.net/test/read.cgi/sec2chd/1081661354/770-
これは荒らしとして認められたっていうことなんでしょうか?
IP抜かれてるってことですか?
すぐアク禁になることはなさそうだけど・・・

33 :臺地 ◆6rqpPuO9q2 :04/05/15 13:21 ID:yuYJg+ss
>>32
「報告されたもので、特に異議が挟まれていなければ
実際にあらしとして処理がどんどん進んで行きます」

ということなのでそう認知されたはずかと思います。。まだ処理はされてないのかな・?

34 :臺地 ◆6rqpPuO9q2 :04/05/15 13:27 ID:yuYJg+ss
2googleキタ━━━━(゚∀゚)━━━━!!
・・・・・しょぼ

35 :weapon ◆RRlBLdA0dk :04/05/15 20:01 ID:SyY80n2q
2google?

36 :臺地 ◆6rqpPuO9q2 :04/05/15 20:35 ID:yuYJg+ss
>>34
IDを検索したんですYO

37 :大学への名無しさん:04/05/16 17:51 ID:sz4+o3KS
東大模試って全部でいくつ?

38 :臺地 ◆5knYXAvCqI :04/05/16 19:37 ID:eeRcQyd+
>>12
完璧。文句ありません。[2]とかこちらの方が実戦的ですね。

>>37
有名な6個以外はわからんスマソ

ついでに問題。答えはトリップ
半径1の円に内接する正n角形の全ての対角線の本数をK_n、その総和をL_nとするとき、
lim[n→∞]L_n/K_n=#[・]

39 :weapon ◆RRlBLdA0dk :04/05/16 20:56 ID:lWgI6uLu
なんの総和?

40 :大学への名無しさん:04/05/16 20:59 ID:9ZdSVSRY
なんの総和?

41 :weapon ◆5knYXAvCqI :04/05/16 22:43 ID:lWgI6uLu
長さの総和かな

42 :臺地 ◆6rqpPuO9q2 :04/05/17 00:30 ID:KPGf1il7
ああ長さの総和ですスマソ。。問題文省略したら書き漏らしちった

43 :臺地 ◆mh5pUMV5TA :04/05/17 00:43 ID:KPGf1il7
>>41
ってか早っすげ〜

じゃもう一問

楕円C_1:x^2+4y^2=4を原点中心反時計周りにα回転(0<α<π/2)させて得られる楕円を
C_2とする。C_1,C_2の第一象限にある交点をP、PにおけるC_1,C_2の接線をl_1,l_2とする。
l_1とl_2の成す角θの最大値θ_0に対し、tanθ_0=#[・]

44 :weapon ◆5knYXAvCqI :04/05/17 00:55 ID:2BqyCFQu
>>43
全然早くないと思うけど・・・
テレビ見てたし

2次曲線とかよく知りませぬ
ということで他の方ドゾー

45 :weapon ◆RRlBLdA0dk :04/05/17 00:57 ID:2BqyCFQu
おっと

46 : ◆o3cYBjU.vc :04/05/17 00:57 ID:9RCY/bbz
 

47 :大学への名無しさん:04/05/17 01:47 ID:9/0/qW70
>>43
 (x/2)^2+y^2=1上のある点A(x,y)をαだけ回転させると
 A’=R(α)A=(xc−ys,xs+yc) (ただしR(θ)は回転行列)
または複素数平面に置きなおして(現行は回転行列なんだっけ?)
 A’=(x+yi)*(c+is)=(xc-ys)+i*(xs+yc)
 さて、このAの代表点として、題意のPを選ぶことにしよう。
 すると、Aにおける接線とは、L(1)≡ほにゃららこにゃらら
 A’における接線とは、L(2)≡へにゃららふにゃらら
 両方のtanを比較して頑張る・・・?

 素直にやったつもり。計算は一切してないので自信なし。
 直感的には対照的なtanθ=1 (θ=π/4) か・・・?

48 :名無し募集中。。。 ◆mh5pUMV5TA :04/05/17 17:28 ID:r/hXXQZX
>>43について、例えばこんな問

問 直線l_1:y=-ax、直線l_2:y=axとする。aがtan15°≦a≦tan60°の範囲で変化するときl_1とl_2の成す角θの最大値を求めよ。

答@ l_1からl_2に反時計周りに測った角度を、二直線の成す角θとすると、30°≦θ≦120°より、最大値は120°
答A l_2からl_1に反時計周りに測った角度を、二直線の成す角θとすると、60°≦θ≦150°より、最大値は150°
どっちも間違いじゃない?

ではaの範囲をtan15°<a≦tan60°に変えてみたら
答@の考え方なら、30°<θ≦120°より、最大値は120°
答Aの考え方なら、60°≦θ<150°より、最大値は存在しない。
これも、どっちも間違いじゃない?

>>43も同じ問題を孕んでます。題意を読み取れということなんでしょうが、厳密には不備かと。

49 :臺地 ◆6rqpPuO9q2 :04/05/17 22:32 ID:0DLKYrB0
>>43も「鋭角θ」を書き入れるの忘れてたよ・・・・ほんとすみませんでした
でも原則「直線の成す角」は0〜90度で、「ベクトルの成す角」は0〜180度で捉える
って話・・・・いや言い訳か・・・申し訳ない

>>44
食わず嫌いではないですか?たとえ無知識だったとしても二次曲線なんて1時間あれば大体の
こと掴めると思いますYO・・って以前楕円の問題を解いてませんでしたか?

50 :weapon ◆RRlBLdA0dk :04/05/17 23:42 ID:nD4J5QDU
食わず嫌いというかもう忘れますた
今更ねぇ・・・('A`)

51 :weapon ◆RRlBLdA0dk :04/05/17 23:59 ID:nD4J5QDU
§1 数と式 を終わらせときます。

8 acosθ+bsinθ=1,(a/cosθ)+(b/sinθ)=1のとき、
 (1) cosθsinθ=ab/(1-a^2-b^2)が成り立つことを示せ。
 (2) cosθ+sinθをa,bの有理式で表せ。

9 a,b,cは実数で、a(a+b+c)>0,a(b+2a)<0をみたしているとき、
        ab,b(a+b+c),b(2a-b-4c)
  の符号をしらべよ。

10 実数a,b,c,dが、
      a+b=1,cd=4,ab+c+d=5,ad+bc=3
   をみたすとき、a,b,c,dの符号を判定せよ。

まあゆっくりやってくだされ

52 :& :04/05/18 07:38 ID:U7ShmZhn
(゚∀゚)アヒャ!

53 : ◆xMxDSAvKrU :04/05/18 10:59 ID:0K2au1tb
tes

54 : ◆8Oq6O4h2N2 :04/05/18 11:13 ID:0K2au1tb
tes

55 : ◆KVVw7rFG.I :04/05/18 11:14 ID:0K2au1tb
tes

56 :臺地 ◆wuCl88Ta5w :04/05/18 17:23 ID:m9uz8JYj
>>50
(・∀・)・・・・

>>51
久しぶりだーやってみます

>>52

>>53-55
2chブラウザ使いなされ


こちらも継続させて(・∀・) イイ!ですか?トリップ問題

一辺2の正方形をSとし、Sの対角線の交点をAとする。PをSの内部の点、QをSの周上の点
とする。任意のQに対しAP≦AQを満たすようなPの存在する領域の面積は
{(ア)(イ)√2-(ウ)(エ)}/(オ)である。ア〜オに数字1〜9を入れてください(ただしオはできるだけ小さく)

トリップキーは#アイウエオ(カンマとか無)


57 : ◆kaGW8eU99o :04/05/18 17:59 ID:PdeexoYo
u

58 :weapon ◆RRlBLdA0dk :04/05/18 18:00 ID:Q4FCNujI
うお、&氏お久しぶりです!
スレタイについてはちゃんと話し合ってないままとりあえずこうなってますが
今後どうするかはまた

>>56
???
半径1の円にならない?


59 :名無し募集中。。。 ◆wuCl88Ta5w :04/05/18 18:01 ID:nPPGJ1Be
>>49
ベクトルはその原則あるけど、直線で『原則「直線の成す角」は0〜90度』という原則はあるの?
それなら>>48の答えは90°?
ってほとんどクレーマーだな俺。θが鋭角という条件があれば問題ないですね。
お詫びといっちゃなんですが解答書きます。

>>43
x軸を原点を中心に反時計回りにα/2回転して得られる直線をLとする。
C_1、C_2は直線Lに関して対称なので、交点P(X,Y)は直線L上に存在する。
(直線Lの傾き)=Y/X=tan(α/2) (=tとおく、0<α/2<π/4より0<t<1)
(直線l_1の傾き)=-X/4Y=-1/4t
ここで(x軸からl_1に反時計回りに測った角度)=β、(Lからl_1に反時計回りに測った角度)=γ(0<β,γ<π)とすると、
γ=β-(α/2)で、(l_2からl_1に反時計回りに測った角度)=2γ。(∵l_1、l_2はLに関して対称)
ところでtanβ=-1/4t、tan(α/2)=tより、
tanγ=-(t+1/4t)/(1-1/4)=-(4t+1/t)/3≦-(2√4)/3=-4/3 (等号成立はt=1/2のとき)。
0<t<1から-∞<tanγ≦-3/4、ここでtanγ_0=-4/3(π/2<γ_0<π)とすると、
π/2<γ≦γ_0<3π/4となりθ=2γーπ。
θが最大になるのはγが最大になるときで、tanθ_0=tan(2γ_0-π)=tan(2γ_0)=24/7

>>56
AP≦AQだと、答えはπだね。
AP≦PQかな。
表記が違うので一見わからないですが、この問は前スレで&氏による模試の問[2]と本質は全く同じですね。

60 :weapon ◆RRlBLdA0dk :04/05/18 18:05 ID:Q4FCNujI
うわすげー

61 :weapon ◆wuCl88Ta5w :04/05/18 18:43 ID:Q4FCNujI
>>56

62 :臺地 ◆6rqpPuO9q2 :04/05/18 20:46 ID:m9uz8JYj
PQでした・・・・○| ̄|_

参会連続書きミス・・・・謝ってもすむはなしじゃないやこりゃ・・
もう出者版のやめまつ



63 :weapon ◆RRlBLdA0dk :04/05/18 21:04 ID:Q4FCNujI
どんまい
でも問題文は大事にしませう

64 :臺地 ◆6rqpPuO9q2 :04/05/19 17:27 ID:QczHVQc1
今日は皆さんに、受験生の中に少なからず生息している”タコ”と呼ばれる人々のことを
お話しましょう。
5つのタコ発見法
その1 授業中やたらとうなずく
その2 意味もなくノートがきれい
その3 正解を講義で聞いたにもかかわらず自分の方針にこだわり、講義後必ず
     ”この方針では解けませんか”と質問してくる
その4 たいした別解でもないのにやたらと人に見せたがる
その5 すばらしい解法を教え終わってウットリしている先生に向かって余りに基本的な事
     を質問し、ガックリさせる
以上の項目の3つ以上に当てはまればその人は紛れもない”タコ”です。これらの人々の
ペースにはめられると先生は授業を破壊され、受験生は自分の学習を見失うことになるので
要注意です。では以降この”タコ”たちがムチャクチャな論理によって、
強引に”正解”をツモってしまう勇姿をいくつか見てもらいましょう。


・・・・・_| ̄|○i|! 

65 :大学への名無しさん:04/05/19 18:12 ID:K/C86Pzh
>>64
>その3 正解を講義で聞いたにもかかわらず自分の方針にこだわり、講義後必ず
     ”この方針では解けませんか”と質問してくる


これは、大事なこと。エレガントな解法だけが持てはやされますが、要は問題の種類と発想や着眼点との関連付けを体系的に網羅することが受験勉強のコツ。
どんなささいな別解も軽視しないほうが伸びます。

66 :weapon ◆RRlBLdA0dk :04/05/19 19:36 ID:pkaFYthD
>>64
ある麻雀漫画のパクリ?

たまにはこんなのも・・・
x^5+x+1を因数分解せよ

67 :大学への名無しさん:04/05/19 19:56 ID:NXsVQ8Qt
>>66
z^3=1の虚数根を考えて
(x^2+x+1)を因数に持つ
以下略

68 :大学への名無しさん:04/05/19 21:49 ID:HGphngut
>>64
 >その3 正解を講義で聞いたにもかかわらず自分の方針にこだわり、講義後必ず
     ”この方針では解けませんか”と質問してくる

 これは素晴らしい姿勢。

69 :大学への名無しさん:04/05/19 23:13 ID:udoZp2w0
その2 意味もなくノートがきれい
その3 正解を講義で聞いたにもかかわらず自分の方針にこだわり、講義後必ず
     ”この方針では解けませんか”と質問してくる

これは全然問題なしかと

70 :hage ◆d14Sgpue.s :04/05/19 23:15 ID:giElV0jG
その5 すばらしい解法を教え終わってウットリしている先生に向かって余りに基本的な事
     を質問し、ガックリさせる

受験でその曖昧なところを間違えるよりマシ。
先生の主観にたってどうする

71 :臺地 ◆6rqpPuO9q2 :04/05/20 01:09 ID:HySznjGG
ネタなわけだが・・・・(・∀・) (何かのパロディらしい)
一応続きもある

≫69
あーあ・・・・

72 :臺地 ◆6rqpPuO9q2 :04/05/20 01:42 ID:HySznjGG
物理もいかが?

図においてABCは質量Mの三角柱を表している。その全ての面は滑らかとする。
三角柱の一つの面AB上に質量mの立方体状の小物体Pを静かにのせると、小物体Pは
斜面ABに沿って摩擦なしに滑り落ち、三角柱は水平面上を右に滑り出す。
斜面ABの仰角をθ、重力加速度をgとするとき、三角柱の加速度の水平成分Aを
M,m,g,θで表せ。

図、ないけど・・・・
水平面右方向をx軸、鉛直上向きをy軸として、A(1,0)、B(17,12)、C(26,0)、P(13,9)
とでもイメージすれば問題文の図に近いと思います

73 :大地の水 ◆KBT2TXHjEE :04/05/20 04:23 ID:Jm9eEeAB
>>72
小物体の加速度のx成分をa(x)、y成分をa(y)、小物体が斜面から受ける抗力の大きさをN、とする。

小物体Pの運動方程式
x成分・・・ma(x)=-Nsinθ・・・@
y成分・・・ma(y)=Ncosθ-mg・・・A
三角柱の運動方程式
x成分・・・MA=Nsinθ・・・B

はじめ(t=0)のPの位置をSとし、凾矧ヤに、PがSQ↑動き、三角柱がSR↑動いたとし、
直線RPとQを通ってy軸に平行な直線の交点をHとすると、小物体は斜面に接して動く事から、
三角形RSQについて次の関係が成り立つ。
(但し、三角柱の速度のx成分をV、小物体の速度のx、y成分をそれぞれv(x)、v(y)とした。)

|v(y)|凾煤(V+|v(x)|)凾*tanθ
∴-v(y)=(V-v(x))tanθ
∴v(y)=(v(x)-V)tanθ
この両辺をtで微分すると、
a(y)=(a(x)-A)tanθ・・・C


以上を解いて、A=cosθsinθmg/{M+m(sinθ)^2}

74 :臺地 ◆6rqpPuO9q2 :04/05/20 17:58 ID:HySznjGG
>>51
8.
(1)acosθ+bsinθ=1,bcosθ+asinθ=cosθsinθを辺辺掛ける
(2)今度は辺辺たして(a+b)(cosθ+sinθ)=cosθsinθ(1)代入して整理。
cosθ+sinθ={1-(a-b)^2}/{(1-a^2-b^2)(a+b)}

9.
cの正負で場合分けして領域図示。順に、負・正・正

10.
a+b=1,ab=5-c-d。a,bはt^2-t+5-c-d=0の実数解。判別式が0以上より、c+d>=19/4>0
これとcd>0より、c>0,d>0。c,dはt^2+(k-5)t+4=0の実数解で、(k=ab)
t={5-k±√(k^2-10k+9)}/2。∴ad+bc={(a+b)(5-k)±√(k^2-10k+9)}/2=3
∴±√(k^2-10k+9)=k+1両辺2乗して(1-4k)(k^2-10k+9)=(k+1)^2
∴k^3-10k^2+12k-2=3つ実数解を持つが、全部正。当然abも正である。
a+b>0と合わせ、a>0,b>0


75 :臺地 ◆6rqpPuO9q2 :04/05/20 18:01 ID:HySznjGG
>>73
こんにちはっっ!
>>72大正解です〜誘導3問削除してたのに・・・・すげー
物理また投下したいけど図が必要なことが多いからなぁ・・・やりづら

76 :大地の水 ◆KBT2TXHjEE :04/05/20 18:18 ID:DNc216O8
>>75
どうもこんにちは。
過去ログを読むと、このスレでは数学以外の科目もときどき投下されてるようなので、
解けそうなのがあったら、またそのときに登場するかもしれません。
しかし、今のところ肝心の数学の問題は全然解けませぬ…。 orz
夏が終る頃にはこのスレに参加できるレベルに到達したいと思っておりますので、
もうしばらく1人で問題集使って修行を続けます。ではまたROMに戻ります。

77 :臺地 ◆6rqpPuO9q2 :04/05/20 18:37 ID:HySznjGG
>>76
漏れも修行続けていきます!お互いがんがろう!!
夏まで待ってますよ〜(^-^)
(物理はあと2問ほどストックがあります。因みに前前スレ>>945にも問題あるからやってみて)

78 :臺地 ◆XKoZNclyHs :04/05/20 19:04 ID:HySznjGG
>>74
下から4行目を訂正
×∴k^3-10k^2+12k-2=3つ実数解を
○∴k^3-10k^2+12k-2=0。これは3つ実数解を


見栄えが悪いので問題を挟みます(今回は5回見直したから大ジョブなはず)

kは正の実数とする。xy平面上に曲線C:y=k(x-x^3)がある。直線y=xに関してCと対称な
曲線をC'とする。C,C'が第一象限に、y=x上にはない交点を持つとき、kの範囲は#?

答え方の例:#-13<k<=24や#-6+5√3<=k

79 :weapon ◆RRlBLdA0dk :04/05/20 20:28 ID:GDOir/F2
>>74
8(2)と9が間違ってます
計算ミスかな?



80 :◆tESpxcWT76 :04/05/21 00:38 ID:zlTUNAN0
すげぇ。みんな頑張ってるなぁー。俺もがんがらないと (`・ω・´)

81 :10 ◆YpWuQwQd/Q :04/05/21 16:56 ID:57nJ6cRx
バイト見つからないsage

82 :quindecim(☆5) ◆QRDTxrDxh6 :04/05/21 20:26 ID:4pr4eFXl
>>81
オヒサシブリ!!(・∀・)

83 :臺地 ◆6rqpPuO9q2 :04/05/21 23:23 ID:xKlI9z41
あははもう無茶苦茶やってました。・゚・(ノД‘)・゚・。

>>51
8.(2){1-a^2-b^2+ab}/{(1-a^2-b^2)(a+b)}
9負負正

84 :weapon ◆RRlBLdA0dk :04/05/21 23:51 ID:CElRPHvZ
>>83
正解でつ
模試いつ?

85 :臺地 ◆6rqpPuO9q2 :04/05/21 23:55 ID:xKlI9z41
>>84
何の模試でつか?

86 :weapon ◆RRlBLdA0dk :04/05/21 23:59 ID:CElRPHvZ
東大の各予備校の今年度最初の模試です。
臺地氏が受ける模試で。

87 :臺地 ◆6rqpPuO9q2 :04/05/22 00:02 ID:5NxUA8ow
三大予備校は東大模氏、7月の代ゼミが先陣じゃないですか?
一応6つとも受ける予定。駿台全国は考え中っす)


88 :weapon ◆RRlBLdA0dk :04/05/22 00:06 ID:ct6AU5AH
じゃA判6つね(・∀・)

89 :臺地 ◆6rqpPuO9q2 :04/05/22 00:11 ID:5NxUA8ow
Σ(゚д゚lll)ガーン.なかなかハイレベルな要求をww
去年はまず理科が論外キタ━━━━(゚∀゚)━━━━ッ!!
って感じだたんで今年はもうちょい張り合いたいなぁ

90 :リフレジレイター:04/05/22 00:13 ID:qH9MquwE
A判6つ・・・現実的な数字ですね

91 :臺地 ◆6rqpPuO9q2 :04/05/22 00:14 ID:5NxUA8ow
ああ国語もだった(爆
古文1点漢文0点はいまだに片時も心に焼きついて離れない・・・・


わけでもなかったか(汗

>>90
その心は?w

92 :リフレジレイター:04/05/22 00:16 ID:qH9MquwE
>>91
このスレの9が実行できたから(w

93 :臺地 ◆6rqpPuO9q2 :04/05/22 00:21 ID:5NxUA8ow
9って9先生のこと?東大模試受けたのは秋からでは?

94 :リフレジレイター:04/05/22 00:22 ID:qH9MquwE
weapon先生がいなくなっちゃった。

95 :リフレジレイター:04/05/22 00:25 ID:qH9MquwE
>>93
よく知らないけど、そうかも

96 :臺地 ◆6rqpPuO9q2 :04/05/22 00:48 ID:5NxUA8ow
みんなおちたかな・・・・
明日学校かよ・・・('A`)



97 :quindecim(☆5) ◆QRDTxrDxh6 :04/05/22 00:51 ID:9caAsUGK
>>95
よおこそ!!
ずっとROMってたんですか?

98 :名無し募集中。。。 ◆XKoZNclyHs :04/05/22 00:56 ID:YM6n2zuA
今年の夏にある東大模試のどれか1個は校正でもう解いた
問題は明かせないけど、このスレいるなら大丈夫
ので臺地君は3桁とってね

99 :臺地 ◆6rqpPuO9q2 :04/05/22 01:03 ID:5NxUA8ow
あ、俺も自然なノリでレスしちゃってましたが、

>リフリジレイター氏
こんちわっっす!!
受験生の方ですか?

>>98
(・∀・) コンバンハ!!
>3桁
う〜キツー(゚д゚)でも夏までにはもっと実力上げてやってみせる!!            かも(弱っ

名無し募集中。。。先生って予備校でかなりのポジションにいる予感(・∀・)

100 :臺地 ◆6rqpPuO9q2 :04/05/22 01:06 ID:5NxUA8ow
ああああ名前間違えてるぅぅぅごめんなたいm(_ _)m>リフレジレイター氏
・・・・冷蔵庫?w

115 KB
■ このスレッドは過去ログ倉庫に格納されています

★スマホ版★ 掲示板に戻る 全部 前100 次100 最新50

read.cgi ver 05.04.00 2017/10/04 Walang Kapalit ★
FOX ★ DSO(Dynamic Shared Object)